![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexdifpr | Structured version Visualization version GIF version |
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.) |
Ref | Expression |
---|---|
rexdifpr | ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifpr 4204 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) | |
2 | 3anass 1042 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) | |
3 | 1, 2 | bitri 264 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) |
4 | 3 | anbi1i 731 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) ∧ 𝜑)) |
5 | anass 681 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑))) | |
6 | df-3an 1039 | . . . . . 6 ⊢ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑) ↔ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑)) | |
7 | 6 | bicomi 214 | . . . . 5 ⊢ (((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑) ↔ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) |
8 | 7 | anbi2i 730 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑))) |
9 | 5, 8 | bitri 264 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑))) |
10 | 4, 9 | bitri 264 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑))) |
11 | 10 | rexbii2 3039 | 1 ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 ∖ cdif 3571 {cpr 4179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-sn 4178 df-pr 4180 |
This theorem is referenced by: usgr2pth0 26661 |
Copyright terms: Public domain | W3C validator |