MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdifpr Structured version   Visualization version   Unicode version

Theorem rexdifpr 4205
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.)
Assertion
Ref Expression
rexdifpr  |-  ( E. x  e.  ( A 
\  { B ,  C } ) ph  <->  E. x  e.  A  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )

Proof of Theorem rexdifpr
StepHypRef Expression
1 eldifpr 4204 . . . . 5  |-  ( x  e.  ( A  \  { B ,  C }
)  <->  ( x  e.  A  /\  x  =/= 
B  /\  x  =/=  C ) )
2 3anass 1042 . . . . 5  |-  ( ( x  e.  A  /\  x  =/=  B  /\  x  =/=  C )  <->  ( x  e.  A  /\  (
x  =/=  B  /\  x  =/=  C ) ) )
31, 2bitri 264 . . . 4  |-  ( x  e.  ( A  \  { B ,  C }
)  <->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C ) ) )
43anbi1i 731 . . 3  |-  ( ( x  e.  ( A 
\  { B ,  C } )  /\  ph ) 
<->  ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C ) )  /\  ph ) )
5 anass 681 . . . 4  |-  ( ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C
) )  /\  ph ) 
<->  ( x  e.  A  /\  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
) )
6 df-3an 1039 . . . . . 6  |-  ( ( x  =/=  B  /\  x  =/=  C  /\  ph ) 
<->  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
)
76bicomi 214 . . . . 5  |-  ( ( ( x  =/=  B  /\  x  =/=  C
)  /\  ph )  <->  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )
87anbi2i 730 . . . 4  |-  ( ( x  e.  A  /\  ( ( x  =/= 
B  /\  x  =/=  C )  /\  ph )
)  <->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph )
) )
95, 8bitri 264 . . 3  |-  ( ( ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C
) )  /\  ph ) 
<->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph ) ) )
104, 9bitri 264 . 2  |-  ( ( x  e.  ( A 
\  { B ,  C } )  /\  ph ) 
<->  ( x  e.  A  /\  ( x  =/=  B  /\  x  =/=  C  /\  ph ) ) )
1110rexbii2 3039 1  |-  ( E. x  e.  ( A 
\  { B ,  C } ) ph  <->  E. x  e.  A  ( x  =/=  B  /\  x  =/= 
C  /\  ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  usgr2pth0  26661
  Copyright terms: Public domain W3C validator