MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrprop Structured version   Visualization version   GIF version

Theorem rgrprop 26456
Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrgr.v 𝑉 = (Vtx‘𝐺)
isrgr.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
rgrprop (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)

Proof of Theorem rgrprop
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rgr 26453 . . . 4 RegGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)}
21breqi 4659 . . 3 (𝐺 RegGraph 𝐾𝐺{⟨𝑔, 𝑘⟩ ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)}𝐾)
3 brabv 6699 . . 3 (𝐺{⟨𝑔, 𝑘⟩ ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)}𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V))
42, 3sylbi 207 . 2 (𝐺 RegGraph 𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V))
5 isrgr.v . . . 4 𝑉 = (Vtx‘𝐺)
6 isrgr.d . . . 4 𝐷 = (VtxDeg‘𝐺)
75, 6isrgr 26455 . . 3 ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
87biimpd 219 . 2 ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
94, 8mpcom 38 1 (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200   class class class wbr 4653  {copab 4712  cfv 5888  0*cxnn0 11363  Vtxcvtx 25874  VtxDegcvtxdg 26361   RegGraph crgr 26451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-rgr 26453
This theorem is referenced by:  rusgrprop0  26463  uhgr0edg0rgrb  26470  frrusgrord  27205
  Copyright terms: Public domain W3C validator