![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riinn0 | Structured version Visualization version GIF version |
Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
riinn0 | ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3805 | . 2 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) | |
2 | r19.2z 4060 | . . . . 5 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) → ∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) | |
3 | 2 | ancoms 469 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → ∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) |
4 | iinss 4571 | . . . 4 ⊢ (∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) |
6 | df-ss 3588 | . . 3 ⊢ (∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ↔ (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) = ∩ 𝑥 ∈ 𝑋 𝑆) | |
7 | 5, 6 | sylib 208 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) = ∩ 𝑥 ∈ 𝑋 𝑆) |
8 | 1, 7 | syl5eq 2668 | 1 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ∩ ciin 4521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-iin 4523 |
This theorem is referenced by: riinrab 4596 riiner 7820 mreriincl 16258 riinopn 20713 alexsublem 21848 fnemeet1 32361 |
Copyright terms: Public domain | W3C validator |