MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinn0 Structured version   Visualization version   Unicode version

Theorem riinn0 4595
Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riinn0  |-  ( ( A. x  e.  X  S  C_  A  /\  X  =/=  (/) )  ->  ( A  i^i  |^|_ x  e.  X  S )  =  |^|_ x  e.  X  S )
Distinct variable groups:    x, A    x, X
Allowed substitution hint:    S( x)

Proof of Theorem riinn0
StepHypRef Expression
1 incom 3805 . 2  |-  ( A  i^i  |^|_ x  e.  X  S )  =  (
|^|_ x  e.  X  S  i^i  A )
2 r19.2z 4060 . . . . 5  |-  ( ( X  =/=  (/)  /\  A. x  e.  X  S  C_  A )  ->  E. x  e.  X  S  C_  A
)
32ancoms 469 . . . 4  |-  ( ( A. x  e.  X  S  C_  A  /\  X  =/=  (/) )  ->  E. x  e.  X  S  C_  A
)
4 iinss 4571 . . . 4  |-  ( E. x  e.  X  S  C_  A  ->  |^|_ x  e.  X  S  C_  A
)
53, 4syl 17 . . 3  |-  ( ( A. x  e.  X  S  C_  A  /\  X  =/=  (/) )  ->  |^|_ x  e.  X  S  C_  A
)
6 df-ss 3588 . . 3  |-  ( |^|_ x  e.  X  S  C_  A 
<->  ( |^|_ x  e.  X  S  i^i  A )  = 
|^|_ x  e.  X  S )
75, 6sylib 208 . 2  |-  ( ( A. x  e.  X  S  C_  A  /\  X  =/=  (/) )  ->  ( |^|_ x  e.  X  S  i^i  A )  =  |^|_ x  e.  X  S )
81, 7syl5eq 2668 1  |-  ( ( A. x  e.  X  S  C_  A  /\  X  =/=  (/) )  ->  ( A  i^i  |^|_ x  e.  X  S )  =  |^|_ x  e.  X  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-iin 4523
This theorem is referenced by:  riinrab  4596  riiner  7820  mreriincl  16258  riinopn  20713  alexsublem  21848  fnemeet1  32361
  Copyright terms: Public domain W3C validator