![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rintn0 | Structured version Visualization version GIF version |
Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
Ref | Expression |
---|---|
rintn0 | ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intssuni2 4502 | . . 3 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑋 ⊆ ∪ 𝒫 𝐴) | |
2 | ssid 3624 | . . . 4 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐴 | |
3 | sspwuni 4611 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝐴) | |
4 | 2, 3 | mpbi 220 | . . 3 ⊢ ∪ 𝒫 𝐴 ⊆ 𝐴 |
5 | 1, 4 | syl6ss 3615 | . 2 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑋 ⊆ 𝐴) |
6 | sseqin2 3817 | . 2 ⊢ (∩ 𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) | |
7 | 5, 6 | sylib 208 | 1 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ≠ wne 2794 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 ∪ cuni 4436 ∩ cint 4475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-uni 4437 df-int 4476 |
This theorem is referenced by: mrerintcl 16257 ismred2 16263 |
Copyright terms: Public domain | W3C validator |