MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rintn0 Structured version   Visualization version   Unicode version

Theorem rintn0 4619
Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
rintn0  |-  ( ( X  C_  ~P A  /\  X  =/=  (/) )  -> 
( A  i^i  |^| X )  =  |^| X )

Proof of Theorem rintn0
StepHypRef Expression
1 intssuni2 4502 . . 3  |-  ( ( X  C_  ~P A  /\  X  =/=  (/) )  ->  |^| X  C_  U. ~P A
)
2 ssid 3624 . . . 4  |-  ~P A  C_ 
~P A
3 sspwuni 4611 . . . 4  |-  ( ~P A  C_  ~P A  <->  U. ~P A  C_  A
)
42, 3mpbi 220 . . 3  |-  U. ~P A  C_  A
51, 4syl6ss 3615 . 2  |-  ( ( X  C_  ~P A  /\  X  =/=  (/) )  ->  |^| X  C_  A )
6 sseqin2 3817 . 2  |-  ( |^| X  C_  A  <->  ( A  i^i  |^| X )  = 
|^| X )
75, 6sylib 208 1  |-  ( ( X  C_  ~P A  /\  X  =/=  (/) )  -> 
( A  i^i  |^| X )  =  |^| X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    =/= wne 2794    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-uni 4437  df-int 4476
This theorem is referenced by:  mrerintcl  16257  ismred2  16263
  Copyright terms: Public domain W3C validator