Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmoeqALT Structured version   Visualization version   GIF version

Theorem rmoeqALT 29327
Description: Equality's restricted existential "at most one" property. (Contributed by Thierry Arnoux, 30-Mar-2018.) Obsolete version of rmoeq 3405 as of 27-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
rmoeqALT (𝐴𝑉 → ∃*𝑥𝐵 𝑥 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem rmoeqALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
21rgenw 2924 . . 3 𝑥𝐵 (𝑥 = 𝐴𝑥 = 𝐴)
3 eqeq2 2633 . . . . . 6 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
43imbi2d 330 . . . . 5 (𝑦 = 𝐴 → ((𝑥 = 𝐴𝑥 = 𝑦) ↔ (𝑥 = 𝐴𝑥 = 𝐴)))
54ralbidv 2986 . . . 4 (𝑦 = 𝐴 → (∀𝑥𝐵 (𝑥 = 𝐴𝑥 = 𝑦) ↔ ∀𝑥𝐵 (𝑥 = 𝐴𝑥 = 𝐴)))
65spcegv 3294 . . 3 (𝐴𝑉 → (∀𝑥𝐵 (𝑥 = 𝐴𝑥 = 𝐴) → ∃𝑦𝑥𝐵 (𝑥 = 𝐴𝑥 = 𝑦)))
72, 6mpi 20 . 2 (𝐴𝑉 → ∃𝑦𝑥𝐵 (𝑥 = 𝐴𝑥 = 𝑦))
8 nfv 1843 . . 3 𝑦 𝑥 = 𝐴
98rmo2 3526 . 2 (∃*𝑥𝐵 𝑥 = 𝐴 ↔ ∃𝑦𝑥𝐵 (𝑥 = 𝐴𝑥 = 𝑦))
107, 9sylibr 224 1 (𝐴𝑉 → ∃*𝑥𝐵 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wex 1704  wcel 1990  wral 2912  ∃*wrmo 2915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rmo 2920  df-v 3202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator