MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo2 Structured version   Visualization version   GIF version

Theorem rmo2 3526
Description: Alternate definition of restricted "at most one." Note that ∃*𝑥𝐴𝜑 is not equivalent to 𝑦𝐴𝑥𝐴(𝜑𝑥 = 𝑦) (in analogy to reu6 3395); to see this, let 𝐴 be the empty set. However, one direction of this pattern holds; see rmo2i 3527. (Contributed by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1 𝑦𝜑
Assertion
Ref Expression
rmo2 (∃*𝑥𝐴 𝜑 ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rmo2
StepHypRef Expression
1 df-rmo 2920 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 nfv 1843 . . . 4 𝑦 𝑥𝐴
3 rmo2.1 . . . 4 𝑦𝜑
42, 3nfan 1828 . . 3 𝑦(𝑥𝐴𝜑)
54mo2 2479 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦))
6 impexp 462 . . . . 5 (((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝑦)))
76albii 1747 . . . 4 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
8 df-ral 2917 . . . 4 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
97, 8bitr4i 267 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝑦))
109exbii 1774 . 2 (∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
111, 5, 103bitri 286 1 (∃*𝑥𝐴 𝜑 ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wex 1704  wnf 1708  wcel 1990  ∃*wmo 2471  wral 2912  ∃*wrmo 2915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475  df-ral 2917  df-rmo 2920
This theorem is referenced by:  rmo2i  3527  disjiun  4640  rmoeqALT  29327  poimirlem2  33411  rmoanim  41179
  Copyright terms: Public domain W3C validator