Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenn0 Structured version   Visualization version   GIF version

Theorem salgenn0 40549
Description: The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Assertion
Ref Expression
salgenn0 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
Distinct variable group:   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem salgenn0
StepHypRef Expression
1 uniexg 6955 . . . . 5 (𝑋𝑉 𝑋 ∈ V)
2 pwsal 40535 . . . . 5 ( 𝑋 ∈ V → 𝒫 𝑋 ∈ SAlg)
31, 2syl 17 . . . 4 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
4 unipw 4918 . . . . . 6 𝒫 𝑋 = 𝑋
54a1i 11 . . . . 5 (𝑋𝑉 𝒫 𝑋 = 𝑋)
6 pwuni 4474 . . . . . 6 𝑋 ⊆ 𝒫 𝑋
76a1i 11 . . . . 5 (𝑋𝑉𝑋 ⊆ 𝒫 𝑋)
85, 7jca 554 . . . 4 (𝑋𝑉 → ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋))
93, 8jca 554 . . 3 (𝑋𝑉 → (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
10 unieq 4444 . . . . . 6 (𝑠 = 𝒫 𝑋 𝑠 = 𝒫 𝑋)
1110eqeq1d 2624 . . . . 5 (𝑠 = 𝒫 𝑋 → ( 𝑠 = 𝑋 𝒫 𝑋 = 𝑋))
12 sseq2 3627 . . . . 5 (𝑠 = 𝒫 𝑋 → (𝑋𝑠𝑋 ⊆ 𝒫 𝑋))
1311, 12anbi12d 747 . . . 4 (𝑠 = 𝒫 𝑋 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
1413elrab 3363 . . 3 (𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
159, 14sylibr 224 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
16 ne0i 3921 . 2 (𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
1715, 16syl 17 1 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436  SAlgcsalg 40528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-salg 40529
This theorem is referenced by:  salgencl  40550  salgenuni  40555
  Copyright terms: Public domain W3C validator