MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb56 Structured version   Visualization version   GIF version

Theorem sb56 2150
Description: Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 1881. The implication "to the left" is equs4 2290 and does not require any dv condition (but the version with a dv condition, equs4v 1930, requires fewer axioms). Theorem equs45f 2350 replaces the dv condition with a non-freeness hypothesis and equs5 2351 replaces it with a distinctor as antecedent. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2109 in place of equsex 2292 in order to remove dependency on ax-13 2246. (Revised by BJ, 20-Dec-2020.)
Assertion
Ref Expression
sb56 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb56
StepHypRef Expression
1 nfa1 2028 . 2 𝑥𝑥(𝑥 = 𝑦𝜑)
2 ax12v2 2049 . . 3 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
3 sp 2053 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
43com12 32 . . 3 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
52, 4impbid 202 . 2 (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
61, 5equsexv 2109 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  sb6  2429  sb5  2430  mopick  2535  alexeqg  3332  bj-sb3v  32756  bj-sb4v  32757  bj-sb6  32767  bj-sb5  32768  pm13.196a  38615
  Copyright terms: Public domain W3C validator