| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb5rf | Structured version Visualization version GIF version | ||
| Description: Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 20-Sep-2018.) |
| Ref | Expression |
|---|---|
| sb5rf.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| sb5rf | ⊢ (𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb5rf.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | sbequ12r 2112 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | equsex 2292 | . 2 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝜑) |
| 4 | 3 | bicomi 214 | 1 ⊢ (𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∃wex 1704 Ⅎwnf 1708 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |