MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ12r Structured version   Visualization version   GIF version

Theorem sbequ12r 2112
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
sbequ12r (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))

Proof of Theorem sbequ12r
StepHypRef Expression
1 sbequ12 2111 . . 3 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
21bicomd 213 . 2 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑𝜑))
32equcoms 1947 1 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-sb 1881
This theorem is referenced by:  sbequ12a  2113  sbid  2114  sb5rf  2422  sb6rf  2423  2sb5rf  2451  2sb6rf  2452  opeliunxp  5170  isarep1  5977  findes  7096  axrepndlem1  9414  axrepndlem2  9415  nn0min  29567  esumcvg  30148  bj-abbi  32775  bj-sbidmOLD  32831  wl-nfs1t  33324  wl-sb6rft  33330  wl-equsb4  33338  wl-ax11-lem5  33366  sbcalf  33917  sbcexf  33918  opeliun2xp  42111
  Copyright terms: Public domain W3C validator