| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbc19.21g | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
| Ref | Expression |
|---|---|
| sbcgf.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| sbc19.21g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcimg 3477 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | |
| 2 | sbcgf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | sbcgf 3501 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| 4 | 3 | imbi1d 331 | . 2 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) |
| 5 | 1, 4 | bitrd 268 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 Ⅎwnf 1708 ∈ wcel 1990 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: bnj121 30940 bnj124 30941 bnj130 30944 bnj207 30951 bnj611 30988 bnj1000 31011 |
| Copyright terms: Public domain | W3C validator |