Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj130 Structured version   Visualization version   GIF version

Theorem bnj130 30944
Description: Technical lemma for bnj151 30947. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj130.1 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj130.2 (𝜑′[1𝑜 / 𝑛]𝜑)
bnj130.3 (𝜓′[1𝑜 / 𝑛]𝜓)
bnj130.4 (𝜃′[1𝑜 / 𝑛]𝜃)
Assertion
Ref Expression
bnj130 (𝜃′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)))
Distinct variable groups:   𝐴,𝑛   𝑅,𝑛   𝑓,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑛)   𝜓(𝑥,𝑓,𝑛)   𝜃(𝑥,𝑓,𝑛)   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝜑′(𝑥,𝑓,𝑛)   𝜓′(𝑥,𝑓,𝑛)   𝜃′(𝑥,𝑓,𝑛)

Proof of Theorem bnj130
StepHypRef Expression
1 bnj130.1 . . 3 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
21sbcbii 3491 . 2 ([1𝑜 / 𝑛]𝜃[1𝑜 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3 bnj130.4 . 2 (𝜃′[1𝑜 / 𝑛]𝜃)
4 bnj105 30790 . . . . . . . . . 10 1𝑜 ∈ V
54bnj90 30788 . . . . . . . . 9 ([1𝑜 / 𝑛]𝑓 Fn 𝑛𝑓 Fn 1𝑜)
65bicomi 214 . . . . . . . 8 (𝑓 Fn 1𝑜[1𝑜 / 𝑛]𝑓 Fn 𝑛)
7 bnj130.2 . . . . . . . 8 (𝜑′[1𝑜 / 𝑛]𝜑)
8 bnj130.3 . . . . . . . 8 (𝜓′[1𝑜 / 𝑛]𝜓)
96, 7, 83anbi123i 1251 . . . . . . 7 ((𝑓 Fn 1𝑜𝜑′𝜓′) ↔ ([1𝑜 / 𝑛]𝑓 Fn 𝑛[1𝑜 / 𝑛]𝜑[1𝑜 / 𝑛]𝜓))
10 sbc3an 3494 . . . . . . 7 ([1𝑜 / 𝑛](𝑓 Fn 𝑛𝜑𝜓) ↔ ([1𝑜 / 𝑛]𝑓 Fn 𝑛[1𝑜 / 𝑛]𝜑[1𝑜 / 𝑛]𝜓))
119, 10bitr4i 267 . . . . . 6 ((𝑓 Fn 1𝑜𝜑′𝜓′) ↔ [1𝑜 / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
1211eubii 2492 . . . . 5 (∃!𝑓(𝑓 Fn 1𝑜𝜑′𝜓′) ↔ ∃!𝑓[1𝑜 / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
134bnj89 30787 . . . . 5 ([1𝑜 / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) ↔ ∃!𝑓[1𝑜 / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
1412, 13bitr4i 267 . . . 4 (∃!𝑓(𝑓 Fn 1𝑜𝜑′𝜓′) ↔ [1𝑜 / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
1514imbi2i 326 . . 3 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1𝑜 / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
16 nfv 1843 . . . . 5 𝑛(𝑅 FrSe 𝐴𝑥𝐴)
1716sbc19.21g 3502 . . . 4 (1𝑜 ∈ V → ([1𝑜 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1𝑜 / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))))
184, 17ax-mp 5 . . 3 ([1𝑜 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1𝑜 / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
1915, 18bitr4i 267 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)) ↔ [1𝑜 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
202, 3, 193bitr4i 292 1 (𝜃′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  ∃!weu 2470  Vcvv 3200  [wsbc 3435   Fn wfn 5883  1𝑜c1o 7553   FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-suc 5729  df-fn 5891  df-1o 7560
This theorem is referenced by:  bnj151  30947
  Copyright terms: Public domain W3C validator