| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbccsb2 | Structured version Visualization version GIF version | ||
| Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbccsb2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3445 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 2 | elex 3212 | . 2 ⊢ (𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
| 3 | abid 2610 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 4 | 3 | sbcbii 3491 | . . 3 ⊢ ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 5 | sbcel12 3983 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ⦋𝐴 / 𝑥⦌𝑥 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑}) | |
| 6 | csbvarg 4003 | . . . . 5 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
| 7 | 6 | eleq1d 2686 | . . . 4 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝑥 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑} ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) |
| 8 | 5, 7 | syl5bb 272 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) |
| 9 | 4, 8 | syl5bbr 274 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) |
| 10 | 1, 2, 9 | pm5.21nii 368 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∈ wcel 1990 {cab 2608 Vcvv 3200 [wsbc 3435 ⦋csb 3533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |