![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 2, 3 | pm5.21ni 367 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
5 | 1, 4 | pm2.61i 176 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: elrabf 3360 sbcco 3458 sbc5 3460 sbcan 3478 sbcor 3479 sbcal 3485 sbcex2 3486 sbcel1v 3495 sbcreu 3515 eldif 3584 elun 3753 elin 3796 sbccsb2 4005 elpr2 4199 eluni 4439 eliun 4524 sbcbr123 4706 elopab 4983 opelopabsb 4985 opeliunxp2 5260 inisegn0 5497 brfvopabrbr 6279 elpwun 6977 elxp5 7111 opeliunxp2f 7336 tpostpos 7372 ecdmn0 7789 brecop2 7841 elixpsn 7947 bren 7964 elharval 8468 sdom2en01 9124 isfin1-2 9207 wdomac 9349 elwina 9508 elina 9509 lterpq 9792 ltrnq 9801 elnp 9809 elnpi 9810 ltresr 9961 eluz2 11693 dfle2 11980 dflt2 11981 rexanuz2 14089 even2n 15066 isstruct2 15867 xpsfrnel2 16225 ismre 16250 isacs 16312 brssc 16474 isfunc 16524 oduclatb 17144 isipodrs 17161 issubg 17594 isnsg 17623 oppgsubm 17792 oppgsubg 17793 isslw 18023 efgrelexlema 18162 dvdsr 18646 isunit 18657 isirred 18699 issubrg 18780 opprsubrg 18801 islss 18935 islbs4 20171 istopon 20717 basdif0 20757 dis2ndc 21263 elmptrab 21630 isusp 22065 ismet2 22138 isphtpc 22793 elpi1 22845 iscmet 23082 bcthlem1 23121 wlkcpr 26524 isclwwlksng 26888 frgrusgrfrcond 27123 isvcOLD 27434 isnv 27467 hlimi 28045 h1de2ci 28415 elunop 28731 ispcmp 29924 elmpps 31470 eldm3 31651 opelco3 31678 elima4 31679 elno 31799 brsset 31996 brbigcup 32005 elfix2 32011 elsingles 32025 imageval 32037 funpartlem 32049 elaltxp 32082 ellines 32259 isfne4 32335 istotbnd 33568 isbnd 33579 isdrngo1 33755 isnacs 37267 sbccomieg 37357 elmnc 37706 2reu4 41190 |
Copyright terms: Public domain | W3C validator |