| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq2a | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12r 2112. (Contributed by NM, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| sbceq2a | ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1a 3446 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 2 | 1 | eqcoms 2630 | . 2 ⊢ (𝐴 = 𝑥 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 3 | 2 | bicomd 213 | 1 ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-sbc 3436 |
| This theorem is referenced by: tfindes 7062 rabssnn0fi 12785 indexa 33528 fdc 33541 fdc1 33542 alrimii 33924 tratrbVD 39097 |
| Copyright terms: Public domain | W3C validator |