Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdc1 Structured version   Visualization version   GIF version

Theorem fdc1 33542
Description: Variant of fdc 33541 with no specified base value. (Contributed by Jeff Madsen, 18-Jun-2010.)
Hypotheses
Ref Expression
fdc1.1 𝐴 ∈ V
fdc1.2 𝑀 ∈ ℤ
fdc1.3 𝑍 = (ℤ𝑀)
fdc1.4 𝑁 = (𝑀 + 1)
fdc1.5 (𝑎 = (𝑓𝑀) → (𝜁𝜎))
fdc1.6 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
fdc1.7 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
fdc1.8 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
fdc1.9 (𝜂 → ∃𝑎𝐴 𝜁)
fdc1.10 (𝜂𝑅 Fr 𝐴)
fdc1.11 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
fdc1.12 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
Assertion
Ref Expression
fdc1 (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑛   𝑅,𝑎,𝑏   𝑀,𝑎,𝑏,𝑓,𝑘,𝑛   𝑍,𝑎,𝑏,𝑛   𝑁,𝑎,𝑏,𝑓,𝑘,𝑛   𝜑,𝑓,𝑘   𝜓,𝑎   𝜒,𝑎,𝑏,𝑛   𝜃,𝑓,𝑛   𝜏,𝑎,𝑏   𝜂,𝑎,𝑏,𝑓,𝑛   𝜁,𝑏,𝑓,𝑛   𝜎,𝑎
Allowed substitution hints:   𝜑(𝑛,𝑎,𝑏)   𝜓(𝑓,𝑘,𝑛,𝑏)   𝜒(𝑓,𝑘)   𝜃(𝑘,𝑎,𝑏)   𝜏(𝑓,𝑘,𝑛)   𝜂(𝑘)   𝜁(𝑘,𝑎)   𝜎(𝑓,𝑘,𝑛,𝑏)   𝐴(𝑘)   𝑅(𝑓,𝑘,𝑛)   𝑍(𝑓,𝑘)

Proof of Theorem fdc1
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . . 6 (𝑐 = 𝑎 → (𝑐𝐴𝑎𝐴))
21anbi2d 740 . . . . 5 (𝑐 = 𝑎 → ((𝜂𝑐𝐴) ↔ (𝜂𝑎𝐴)))
3 sbceq2a 3447 . . . . 5 (𝑐 = 𝑎 → ([𝑐 / 𝑎]𝜁𝜁))
42, 3anbi12d 747 . . . 4 (𝑐 = 𝑎 → (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) ↔ ((𝜂𝑎𝐴) ∧ 𝜁)))
54imbi1d 331 . . 3 (𝑐 = 𝑎 → ((((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)) ↔ (((𝜂𝑎𝐴) ∧ 𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))))
6 fdc1.1 . . . . . 6 𝐴 ∈ V
7 fdc1.2 . . . . . 6 𝑀 ∈ ℤ
8 fdc1.3 . . . . . 6 𝑍 = (ℤ𝑀)
9 fdc1.4 . . . . . 6 𝑁 = (𝑀 + 1)
10 sbsbc 3439 . . . . . . 7 ([𝑑 / 𝑎]𝜑[𝑑 / 𝑎]𝜑)
11 nfv 1843 . . . . . . . 8 𝑎𝜓
12 fdc1.6 . . . . . . . 8 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
1311, 12sbhypf 3253 . . . . . . 7 (𝑑 = (𝑓‘(𝑘 − 1)) → ([𝑑 / 𝑎]𝜑𝜓))
1410, 13syl5bbr 274 . . . . . 6 (𝑑 = (𝑓‘(𝑘 − 1)) → ([𝑑 / 𝑎]𝜑𝜓))
15 fdc1.7 . . . . . 6 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
16 sbsbc 3439 . . . . . . 7 ([𝑑 / 𝑎]𝜃[𝑑 / 𝑎]𝜃)
17 nfv 1843 . . . . . . . 8 𝑎𝜏
18 fdc1.8 . . . . . . . 8 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
1917, 18sbhypf 3253 . . . . . . 7 (𝑑 = (𝑓𝑛) → ([𝑑 / 𝑎]𝜃𝜏))
2016, 19syl5bbr 274 . . . . . 6 (𝑑 = (𝑓𝑛) → ([𝑑 / 𝑎]𝜃𝜏))
21 simprl 794 . . . . . 6 ((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) → 𝑐𝐴)
22 fdc1.10 . . . . . . 7 (𝜂𝑅 Fr 𝐴)
2322adantr 481 . . . . . 6 ((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) → 𝑅 Fr 𝐴)
24 nfv 1843 . . . . . . . . 9 𝑎(𝜂𝑑𝐴)
25 nfsbc1v 3455 . . . . . . . . . 10 𝑎[𝑑 / 𝑎]𝜃
26 nfcv 2764 . . . . . . . . . . 11 𝑎𝐴
27 nfsbc1v 3455 . . . . . . . . . . 11 𝑎[𝑑 / 𝑎]𝜑
2826, 27nfrex 3007 . . . . . . . . . 10 𝑎𝑏𝐴 [𝑑 / 𝑎]𝜑
2925, 28nfor 1834 . . . . . . . . 9 𝑎([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑)
3024, 29nfim 1825 . . . . . . . 8 𝑎((𝜂𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
31 eleq1 2689 . . . . . . . . . 10 (𝑎 = 𝑑 → (𝑎𝐴𝑑𝐴))
3231anbi2d 740 . . . . . . . . 9 (𝑎 = 𝑑 → ((𝜂𝑎𝐴) ↔ (𝜂𝑑𝐴)))
33 sbceq1a 3446 . . . . . . . . . 10 (𝑎 = 𝑑 → (𝜃[𝑑 / 𝑎]𝜃))
34 sbceq1a 3446 . . . . . . . . . . 11 (𝑎 = 𝑑 → (𝜑[𝑑 / 𝑎]𝜑))
3534rexbidv 3052 . . . . . . . . . 10 (𝑎 = 𝑑 → (∃𝑏𝐴 𝜑 ↔ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
3633, 35orbi12d 746 . . . . . . . . 9 (𝑎 = 𝑑 → ((𝜃 ∨ ∃𝑏𝐴 𝜑) ↔ ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑)))
3732, 36imbi12d 334 . . . . . . . 8 (𝑎 = 𝑑 → (((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑)) ↔ ((𝜂𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))))
38 fdc1.11 . . . . . . . 8 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
3930, 37, 38chvar 2262 . . . . . . 7 ((𝜂𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
4039adantlr 751 . . . . . 6 (((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) ∧ 𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
41 nfv 1843 . . . . . . . . . . 11 𝑎𝜂
4241, 27nfan 1828 . . . . . . . . . 10 𝑎(𝜂[𝑑 / 𝑎]𝜑)
43 nfv 1843 . . . . . . . . . 10 𝑎(𝑑𝐴𝑏𝐴)
4442, 43nfan 1828 . . . . . . . . 9 𝑎((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴))
45 nfv 1843 . . . . . . . . 9 𝑎 𝑏𝑅𝑑
4644, 45nfim 1825 . . . . . . . 8 𝑎(((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)
4734anbi2d 740 . . . . . . . . . 10 (𝑎 = 𝑑 → ((𝜂𝜑) ↔ (𝜂[𝑑 / 𝑎]𝜑)))
4831anbi1d 741 . . . . . . . . . 10 (𝑎 = 𝑑 → ((𝑎𝐴𝑏𝐴) ↔ (𝑑𝐴𝑏𝐴)))
4947, 48anbi12d 747 . . . . . . . . 9 (𝑎 = 𝑑 → (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ↔ ((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴))))
50 breq2 4657 . . . . . . . . 9 (𝑎 = 𝑑 → (𝑏𝑅𝑎𝑏𝑅𝑑))
5149, 50imbi12d 334 . . . . . . . 8 (𝑎 = 𝑑 → ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎) ↔ (((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)))
52 fdc1.12 . . . . . . . 8 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
5346, 51, 52chvar 2262 . . . . . . 7 (((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)
5453adantllr 755 . . . . . 6 ((((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) ∧ [𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)
556, 7, 8, 9, 14, 15, 20, 21, 23, 40, 54fdc 33541 . . . . 5 ((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
5655anassrs 680 . . . 4 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
57 idd 24 . . . . . . 7 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...𝑛)⟶𝐴))
58 fvex 6201 . . . . . . . . . . . 12 (𝑓𝑀) ∈ V
59 fdc1.5 . . . . . . . . . . . 12 (𝑎 = (𝑓𝑀) → (𝜁𝜎))
6058, 59sbcie 3470 . . . . . . . . . . 11 ([(𝑓𝑀) / 𝑎]𝜁𝜎)
61 dfsbcq 3437 . . . . . . . . . . 11 ((𝑓𝑀) = 𝑐 → ([(𝑓𝑀) / 𝑎]𝜁[𝑐 / 𝑎]𝜁))
6260, 61syl5rbbr 275 . . . . . . . . . 10 ((𝑓𝑀) = 𝑐 → ([𝑐 / 𝑎]𝜁𝜎))
6362biimpcd 239 . . . . . . . . 9 ([𝑐 / 𝑎]𝜁 → ((𝑓𝑀) = 𝑐𝜎))
6463adantl 482 . . . . . . . 8 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ((𝑓𝑀) = 𝑐𝜎))
6564anim1d 588 . . . . . . 7 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (((𝑓𝑀) = 𝑐𝜏) → (𝜎𝜏)))
66 idd 24 . . . . . . 7 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (∀𝑘 ∈ (𝑁...𝑛)𝜒 → ∀𝑘 ∈ (𝑁...𝑛)𝜒))
6757, 65, 663anim123d 1406 . . . . . 6 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → (𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
6867eximdv 1846 . . . . 5 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
6968reximdv 3016 . . . 4 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
7056, 69mpd 15 . . 3 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
715, 70chvarv 2263 . 2 (((𝜂𝑎𝐴) ∧ 𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
72 fdc1.9 . 2 (𝜂 → ∃𝑎𝐴 𝜁)
7371, 72r19.29a 3078 1 (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wex 1704  [wsb 1880  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  [wsbc 3435   class class class wbr 4653   Fr wfr 5070  wf 5884  cfv 5888  (class class class)co 6650  1c1 9937   + caddc 9939  cmin 10266  cz 11377  cuz 11687  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator