| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceqal | Structured version Visualization version GIF version | ||
| Description: Set theory version of sbeqal1 38598. (Contributed by Andrew Salmon, 28-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbceqal | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbc 3448 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → [𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵))) | |
| 2 | sbcimg 3477 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ ([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵))) | |
| 3 | eqid 2622 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
| 4 | eqsbc3 3475 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) | |
| 5 | 3, 4 | mpbiri 248 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝑥 = 𝐴) |
| 6 | pm5.5 351 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐴 → (([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) |
| 8 | eqsbc3 3475 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 9 | 2, 7, 8 | 3bitrd 294 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) |
| 10 | 1, 9 | sylibd 229 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 = wceq 1483 ∈ wcel 1990 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: sbeqalb 3488 |
| Copyright terms: Public domain | W3C validator |