| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcgfi | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.) |
| Ref | Expression |
|---|---|
| sbcgfi.1 | ⊢ 𝐴 ∈ V |
| sbcgfi.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| sbcgfi | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcgfi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbcgfi.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | sbcgf 3501 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 Ⅎwnf 1708 ∈ wcel 1990 Vcvv 3200 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: csbgfi 33935 |
| Copyright terms: Public domain | W3C validator |