Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcgfi Structured version   Visualization version   Unicode version

Theorem sbcgfi 33933
Description: Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.)
Hypotheses
Ref Expression
sbcgfi.1  |-  A  e. 
_V
sbcgfi.2  |-  F/ x ph
Assertion
Ref Expression
sbcgfi  |-  ( [. A  /  x ]. ph  <->  ph )

Proof of Theorem sbcgfi
StepHypRef Expression
1 sbcgfi.1 . 2  |-  A  e. 
_V
2 sbcgfi.2 . . 3  |-  F/ x ph
32sbcgf 3501 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ph  <->  ph ) )
41, 3ax-mp 5 1  |-  ( [. A  /  x ]. ph  <->  ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   F/wnf 1708    e. wcel 1990   _Vcvv 3200   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by:  csbgfi  33935
  Copyright terms: Public domain W3C validator