MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snfil Structured version   Visualization version   GIF version

Theorem snfil 21668
Description: A singleton is a filter. Example 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
snfil ((𝐴𝐵𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴))

Proof of Theorem snfil
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 velsn 4193 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2 eqimss 3657 . . . . 5 (𝑥 = 𝐴𝑥𝐴)
32pm4.71ri 665 . . . 4 (𝑥 = 𝐴 ↔ (𝑥𝐴𝑥 = 𝐴))
41, 3bitri 264 . . 3 (𝑥 ∈ {𝐴} ↔ (𝑥𝐴𝑥 = 𝐴))
54a1i 11 . 2 ((𝐴𝐵𝐴 ≠ ∅) → (𝑥 ∈ {𝐴} ↔ (𝑥𝐴𝑥 = 𝐴)))
6 elex 3212 . . 3 (𝐴𝐵𝐴 ∈ V)
76adantr 481 . 2 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 ∈ V)
8 eqid 2622 . . . 4 𝐴 = 𝐴
9 eqsbc3 3475 . . . 4 (𝐴𝐵 → ([𝐴 / 𝑥]𝑥 = 𝐴𝐴 = 𝐴))
108, 9mpbiri 248 . . 3 (𝐴𝐵[𝐴 / 𝑥]𝑥 = 𝐴)
1110adantr 481 . 2 ((𝐴𝐵𝐴 ≠ ∅) → [𝐴 / 𝑥]𝑥 = 𝐴)
12 simpr 477 . . . . 5 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 ≠ ∅)
1312necomd 2849 . . . 4 ((𝐴𝐵𝐴 ≠ ∅) → ∅ ≠ 𝐴)
1413neneqd 2799 . . 3 ((𝐴𝐵𝐴 ≠ ∅) → ¬ ∅ = 𝐴)
15 0ex 4790 . . . 4 ∅ ∈ V
16 eqsbc3 3475 . . . 4 (∅ ∈ V → ([∅ / 𝑥]𝑥 = 𝐴 ↔ ∅ = 𝐴))
1715, 16ax-mp 5 . . 3 ([∅ / 𝑥]𝑥 = 𝐴 ↔ ∅ = 𝐴)
1814, 17sylnibr 319 . 2 ((𝐴𝐵𝐴 ≠ ∅) → ¬ [∅ / 𝑥]𝑥 = 𝐴)
19 sseq1 3626 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
2019anbi2d 740 . . . . . 6 (𝑥 = 𝐴 → ((𝑦𝐴𝑥𝑦) ↔ (𝑦𝐴𝐴𝑦)))
21 eqss 3618 . . . . . . 7 (𝑦 = 𝐴 ↔ (𝑦𝐴𝐴𝑦))
2221biimpri 218 . . . . . 6 ((𝑦𝐴𝐴𝑦) → 𝑦 = 𝐴)
2320, 22syl6bi 243 . . . . 5 (𝑥 = 𝐴 → ((𝑦𝐴𝑥𝑦) → 𝑦 = 𝐴))
2423com12 32 . . . 4 ((𝑦𝐴𝑥𝑦) → (𝑥 = 𝐴𝑦 = 𝐴))
25243adant1 1079 . . 3 (((𝐴𝐵𝐴 ≠ ∅) ∧ 𝑦𝐴𝑥𝑦) → (𝑥 = 𝐴𝑦 = 𝐴))
26 sbcid 3452 . . 3 ([𝑥 / 𝑥]𝑥 = 𝐴𝑥 = 𝐴)
27 vex 3203 . . . 4 𝑦 ∈ V
28 eqsbc3 3475 . . . 4 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴))
2927, 28ax-mp 5 . . 3 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
3025, 26, 293imtr4g 285 . 2 (((𝐴𝐵𝐴 ≠ ∅) ∧ 𝑦𝐴𝑥𝑦) → ([𝑥 / 𝑥]𝑥 = 𝐴[𝑦 / 𝑥]𝑥 = 𝐴))
31 ineq12 3809 . . . . . 6 ((𝑦 = 𝐴𝑥 = 𝐴) → (𝑦𝑥) = (𝐴𝐴))
32 inidm 3822 . . . . . 6 (𝐴𝐴) = 𝐴
3331, 32syl6eq 2672 . . . . 5 ((𝑦 = 𝐴𝑥 = 𝐴) → (𝑦𝑥) = 𝐴)
3429, 26, 33syl2anb 496 . . . 4 (([𝑦 / 𝑥]𝑥 = 𝐴[𝑥 / 𝑥]𝑥 = 𝐴) → (𝑦𝑥) = 𝐴)
3527inex1 4799 . . . . 5 (𝑦𝑥) ∈ V
36 eqsbc3 3475 . . . . 5 ((𝑦𝑥) ∈ V → ([(𝑦𝑥) / 𝑥]𝑥 = 𝐴 ↔ (𝑦𝑥) = 𝐴))
3735, 36ax-mp 5 . . . 4 ([(𝑦𝑥) / 𝑥]𝑥 = 𝐴 ↔ (𝑦𝑥) = 𝐴)
3834, 37sylibr 224 . . 3 (([𝑦 / 𝑥]𝑥 = 𝐴[𝑥 / 𝑥]𝑥 = 𝐴) → [(𝑦𝑥) / 𝑥]𝑥 = 𝐴)
3938a1i 11 . 2 (((𝐴𝐵𝐴 ≠ ∅) ∧ 𝑦𝐴𝑥𝐴) → (([𝑦 / 𝑥]𝑥 = 𝐴[𝑥 / 𝑥]𝑥 = 𝐴) → [(𝑦𝑥) / 𝑥]𝑥 = 𝐴))
405, 7, 11, 18, 30, 39isfild 21662 1 ((𝐴𝐵𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  [wsbc 3435  cin 3573  wss 3574  c0 3915  {csn 4177  cfv 5888  Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743  df-fil 21650
This theorem is referenced by:  snfbas  21670
  Copyright terms: Public domain W3C validator