| Step | Hyp | Ref
| Expression |
| 1 | | velsn 4193 |
. . . 4
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| 2 | | eqimss 3657 |
. . . . 5
⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) |
| 3 | 2 | pm4.71ri 665 |
. . . 4
⊢ (𝑥 = 𝐴 ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝐴)) |
| 4 | 1, 3 | bitri 264 |
. . 3
⊢ (𝑥 ∈ {𝐴} ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝐴)) |
| 5 | 4 | a1i 11 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) → (𝑥 ∈ {𝐴} ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝐴))) |
| 6 | | elex 3212 |
. . 3
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| 7 | 6 | adantr 481 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V) |
| 8 | | eqid 2622 |
. . . 4
⊢ 𝐴 = 𝐴 |
| 9 | | eqsbc3 3475 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) |
| 10 | 8, 9 | mpbiri 248 |
. . 3
⊢ (𝐴 ∈ 𝐵 → [𝐴 / 𝑥]𝑥 = 𝐴) |
| 11 | 10 | adantr 481 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) → [𝐴 / 𝑥]𝑥 = 𝐴) |
| 12 | | simpr 477 |
. . . . 5
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) |
| 13 | 12 | necomd 2849 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) → ∅ ≠ 𝐴) |
| 14 | 13 | neneqd 2799 |
. . 3
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) → ¬ ∅ = 𝐴) |
| 15 | | 0ex 4790 |
. . . 4
⊢ ∅
∈ V |
| 16 | | eqsbc3 3475 |
. . . 4
⊢ (∅
∈ V → ([∅ / 𝑥]𝑥 = 𝐴 ↔ ∅ = 𝐴)) |
| 17 | 15, 16 | ax-mp 5 |
. . 3
⊢
([∅ / 𝑥]𝑥 = 𝐴 ↔ ∅ = 𝐴) |
| 18 | 14, 17 | sylnibr 319 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) → ¬ [∅
/ 𝑥]𝑥 = 𝐴) |
| 19 | | sseq1 3626 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦)) |
| 20 | 19 | anbi2d 740 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝑦) ↔ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑦))) |
| 21 | | eqss 3618 |
. . . . . . 7
⊢ (𝑦 = 𝐴 ↔ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑦)) |
| 22 | 21 | biimpri 218 |
. . . . . 6
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑦) → 𝑦 = 𝐴) |
| 23 | 20, 22 | syl6bi 243 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝑦) → 𝑦 = 𝐴)) |
| 24 | 23 | com12 32 |
. . . 4
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝑦) → (𝑥 = 𝐴 → 𝑦 = 𝐴)) |
| 25 | 24 | 3adant1 1079 |
. . 3
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝑦) → (𝑥 = 𝐴 → 𝑦 = 𝐴)) |
| 26 | | sbcid 3452 |
. . 3
⊢
([𝑥 / 𝑥]𝑥 = 𝐴 ↔ 𝑥 = 𝐴) |
| 27 | | vex 3203 |
. . . 4
⊢ 𝑦 ∈ V |
| 28 | | eqsbc3 3475 |
. . . 4
⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) |
| 29 | 27, 28 | ax-mp 5 |
. . 3
⊢
([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) |
| 30 | 25, 26, 29 | 3imtr4g 285 |
. 2
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝑦) → ([𝑥 / 𝑥]𝑥 = 𝐴 → [𝑦 / 𝑥]𝑥 = 𝐴)) |
| 31 | | ineq12 3809 |
. . . . . 6
⊢ ((𝑦 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑦 ∩ 𝑥) = (𝐴 ∩ 𝐴)) |
| 32 | | inidm 3822 |
. . . . . 6
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 33 | 31, 32 | syl6eq 2672 |
. . . . 5
⊢ ((𝑦 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑦 ∩ 𝑥) = 𝐴) |
| 34 | 29, 26, 33 | syl2anb 496 |
. . . 4
⊢
(([𝑦 / 𝑥]𝑥 = 𝐴 ∧ [𝑥 / 𝑥]𝑥 = 𝐴) → (𝑦 ∩ 𝑥) = 𝐴) |
| 35 | 27 | inex1 4799 |
. . . . 5
⊢ (𝑦 ∩ 𝑥) ∈ V |
| 36 | | eqsbc3 3475 |
. . . . 5
⊢ ((𝑦 ∩ 𝑥) ∈ V → ([(𝑦 ∩ 𝑥) / 𝑥]𝑥 = 𝐴 ↔ (𝑦 ∩ 𝑥) = 𝐴)) |
| 37 | 35, 36 | ax-mp 5 |
. . . 4
⊢
([(𝑦 ∩
𝑥) / 𝑥]𝑥 = 𝐴 ↔ (𝑦 ∩ 𝑥) = 𝐴) |
| 38 | 34, 37 | sylibr 224 |
. . 3
⊢
(([𝑦 / 𝑥]𝑥 = 𝐴 ∧ [𝑥 / 𝑥]𝑥 = 𝐴) → [(𝑦 ∩ 𝑥) / 𝑥]𝑥 = 𝐴) |
| 39 | 38 | a1i 11 |
. 2
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐴) → (([𝑦 / 𝑥]𝑥 = 𝐴 ∧ [𝑥 / 𝑥]𝑥 = 𝐴) → [(𝑦 ∩ 𝑥) / 𝑥]𝑥 = 𝐴)) |
| 40 | 5, 7, 11, 18, 30, 39 | isfild 21662 |
1
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴)) |