Proof of Theorem sbcoreleleqVD
Step | Hyp | Ref
| Expression |
1 | | idn1 38790 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
2 | | sbcel2gv 3496 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) |
3 | 1, 2 | e1a 38852 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) ) |
4 | | sbcel1gvOLD 39094 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) |
5 | 1, 4 | e1a 38852 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥) ) |
6 | | eqsbc3r 3492 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) |
7 | 1, 6 | e1a 38852 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴) ) |
8 | | 3orbi123 38717 |
. . . . 5
⊢
((([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) ∧ ([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥) ∧ ([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) → (([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) |
9 | 8 | 3impexpbicomi 38686 |
. . . 4
⊢
(([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) → (([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥) → (([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))))) |
10 | 3, 5, 7, 9 | e111 38899 |
. . 3
⊢ ( 𝐴 ∈ 𝐵 ▶ ((𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) ) |
11 | | sbc3orgOLD 38742 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))) |
12 | 1, 11 | e1a 38852 |
. . 3
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) ) |
13 | | biantr 972 |
. . . 4
⊢
((([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) ∧ ((𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))) → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) |
14 | 13 | expcom 451 |
. . 3
⊢ (((𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) → (([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴)))) |
15 | 10, 12, 14 | e11 38913 |
. 2
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴)) ) |
16 | 15 | in1 38787 |
1
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) |