MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcrext Structured version   Visualization version   GIF version

Theorem sbcrext 3511
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) (Revised by NM, 18-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
Assertion
Ref Expression
sbcrext (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem sbcrext
StepHypRef Expression
1 sbcex 3445 . . 3 ([𝐴 / 𝑥]𝑦𝐵 𝜑𝐴 ∈ V)
21a1i 11 . 2 (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑𝐴 ∈ V))
3 nfnfc1 2767 . . 3 𝑦𝑦𝐴
4 id 22 . . . 4 (𝑦𝐴𝑦𝐴)
5 nfcvd 2765 . . . 4 (𝑦𝐴𝑦V)
64, 5nfeld 2773 . . 3 (𝑦𝐴 → Ⅎ𝑦 𝐴 ∈ V)
7 sbcex 3445 . . . 4 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
872a1i 12 . . 3 (𝑦𝐴 → (𝑦𝐵 → ([𝐴 / 𝑥]𝜑𝐴 ∈ V)))
93, 6, 8rexlimd2 3025 . 2 (𝑦𝐴 → (∃𝑦𝐵 [𝐴 / 𝑥]𝜑𝐴 ∈ V))
10 sbcng 3476 . . . . . 6 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ ∀𝑦𝐵 ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝑦𝐵 ¬ 𝜑))
1110adantl 482 . . . . 5 ((𝑦𝐴𝐴 ∈ V) → ([𝐴 / 𝑥] ¬ ∀𝑦𝐵 ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝑦𝐵 ¬ 𝜑))
12 sbcralt 3510 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 ¬ 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥] ¬ 𝜑))
1312ancoms 469 . . . . . . 7 ((𝑦𝐴𝐴 ∈ V) → ([𝐴 / 𝑥]𝑦𝐵 ¬ 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥] ¬ 𝜑))
143, 6nfan1 2068 . . . . . . . 8 𝑦(𝑦𝐴𝐴 ∈ V)
15 sbcng 3476 . . . . . . . . 9 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
1615adantl 482 . . . . . . . 8 ((𝑦𝐴𝐴 ∈ V) → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
1714, 16ralbid 2983 . . . . . . 7 ((𝑦𝐴𝐴 ∈ V) → (∀𝑦𝐵 [𝐴 / 𝑥] ¬ 𝜑 ↔ ∀𝑦𝐵 ¬ [𝐴 / 𝑥]𝜑))
1813, 17bitrd 268 . . . . . 6 ((𝑦𝐴𝐴 ∈ V) → ([𝐴 / 𝑥]𝑦𝐵 ¬ 𝜑 ↔ ∀𝑦𝐵 ¬ [𝐴 / 𝑥]𝜑))
1918notbid 308 . . . . 5 ((𝑦𝐴𝐴 ∈ V) → (¬ [𝐴 / 𝑥]𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀𝑦𝐵 ¬ [𝐴 / 𝑥]𝜑))
2011, 19bitrd 268 . . . 4 ((𝑦𝐴𝐴 ∈ V) → ([𝐴 / 𝑥] ¬ ∀𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀𝑦𝐵 ¬ [𝐴 / 𝑥]𝜑))
21 dfrex2 2996 . . . . 5 (∃𝑦𝐵 𝜑 ↔ ¬ ∀𝑦𝐵 ¬ 𝜑)
2221sbcbii 3491 . . . 4 ([𝐴 / 𝑥]𝑦𝐵 𝜑[𝐴 / 𝑥] ¬ ∀𝑦𝐵 ¬ 𝜑)
23 dfrex2 2996 . . . 4 (∃𝑦𝐵 [𝐴 / 𝑥]𝜑 ↔ ¬ ∀𝑦𝐵 ¬ [𝐴 / 𝑥]𝜑)
2420, 22, 233bitr4g 303 . . 3 ((𝑦𝐴𝐴 ∈ V) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2524ex 450 . 2 (𝑦𝐴 → (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)))
262, 9, 25pm5.21ndd 369 1 (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wcel 1990  wnfc 2751  wral 2912  wrex 2913  Vcvv 3200  [wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436
This theorem is referenced by:  sbcrex  3514
  Copyright terms: Public domain W3C validator