| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcrext | Structured version Visualization version Unicode version | ||
| Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) (Revised by NM, 18-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) |
| Ref | Expression |
|---|---|
| sbcrext |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3445 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | nfnfc1 2767 |
. . 3
| |
| 4 | id 22 |
. . . 4
| |
| 5 | nfcvd 2765 |
. . . 4
| |
| 6 | 4, 5 | nfeld 2773 |
. . 3
|
| 7 | sbcex 3445 |
. . . 4
| |
| 8 | 7 | 2a1i 12 |
. . 3
|
| 9 | 3, 6, 8 | rexlimd2 3025 |
. 2
|
| 10 | sbcng 3476 |
. . . . . 6
| |
| 11 | 10 | adantl 482 |
. . . . 5
|
| 12 | sbcralt 3510 |
. . . . . . . 8
| |
| 13 | 12 | ancoms 469 |
. . . . . . 7
|
| 14 | 3, 6 | nfan1 2068 |
. . . . . . . 8
|
| 15 | sbcng 3476 |
. . . . . . . . 9
| |
| 16 | 15 | adantl 482 |
. . . . . . . 8
|
| 17 | 14, 16 | ralbid 2983 |
. . . . . . 7
|
| 18 | 13, 17 | bitrd 268 |
. . . . . 6
|
| 19 | 18 | notbid 308 |
. . . . 5
|
| 20 | 11, 19 | bitrd 268 |
. . . 4
|
| 21 | dfrex2 2996 |
. . . . 5
| |
| 22 | 21 | sbcbii 3491 |
. . . 4
|
| 23 | dfrex2 2996 |
. . . 4
| |
| 24 | 20, 22, 23 | 3bitr4g 303 |
. . 3
|
| 25 | 24 | ex 450 |
. 2
|
| 26 | 2, 9, 25 | pm5.21ndd 369 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: sbcrex 3514 |
| Copyright terms: Public domain | W3C validator |