| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbex | Structured version Visualization version GIF version | ||
| Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbex | ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbn 2391 | . . 3 ⊢ ([𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑 ↔ ¬ [𝑧 / 𝑦]∀𝑥 ¬ 𝜑) | |
| 2 | sbal 2462 | . . . 4 ⊢ ([𝑧 / 𝑦]∀𝑥 ¬ 𝜑 ↔ ∀𝑥[𝑧 / 𝑦] ¬ 𝜑) | |
| 3 | sbn 2391 | . . . . 5 ⊢ ([𝑧 / 𝑦] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑦]𝜑) | |
| 4 | 3 | albii 1747 | . . . 4 ⊢ (∀𝑥[𝑧 / 𝑦] ¬ 𝜑 ↔ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑) |
| 5 | 2, 4 | bitri 264 | . . 3 ⊢ ([𝑧 / 𝑦]∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑) |
| 6 | 1, 5 | xchbinx 324 | . 2 ⊢ ([𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑) |
| 7 | df-ex 1705 | . . 3 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 8 | 7 | sbbii 1887 | . 2 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ [𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑) |
| 9 | df-ex 1705 | . 2 ⊢ (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ¬ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑) | |
| 10 | 6, 8, 9 | 3bitr4i 292 | 1 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∀wal 1481 ∃wex 1704 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: sbmo 2515 sbabel 2793 sbcex2 3486 sbcexgOLD 38753 |
| Copyright terms: Public domain | W3C validator |