| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbex | Structured version Visualization version Unicode version | ||
| Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbn 2391 |
. . 3
| |
| 2 | sbal 2462 |
. . . 4
| |
| 3 | sbn 2391 |
. . . . 5
| |
| 4 | 3 | albii 1747 |
. . . 4
|
| 5 | 2, 4 | bitri 264 |
. . 3
|
| 6 | 1, 5 | xchbinx 324 |
. 2
|
| 7 | df-ex 1705 |
. . 3
| |
| 8 | 7 | sbbii 1887 |
. 2
|
| 9 | df-ex 1705 |
. 2
| |
| 10 | 6, 8, 9 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: sbmo 2515 sbabel 2793 sbcex2 3486 sbcexgOLD 38753 |
| Copyright terms: Public domain | W3C validator |