![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpconn | Structured version Visualization version GIF version |
Description: A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
sconnpconn | ⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issconn 31208 | . 2 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | |
2 | 1 | simplbi 476 | 1 ⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {csn 4177 class class class wbr 4653 × cxp 5112 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 [,]cicc 12178 Cn ccn 21028 IIcii 22678 ≃phcphtpc 22768 PConncpconn 31201 SConncsconn 31202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-sconn 31204 |
This theorem is referenced by: sconntop 31210 txsconn 31223 resconn 31228 iinllyconn 31236 cvmlift2lem10 31294 cvmlift3lem2 31302 cvmlift3 31310 |
Copyright terms: Public domain | W3C validator |