Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resconn Structured version   Visualization version   GIF version

Theorem resconn 31228
Description: A subset of is simply connected iff it is connected. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypothesis
Ref Expression
resconn.1 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
Assertion
Ref Expression
resconn (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn))

Proof of Theorem resconn
Dummy variables 𝑡 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconnpconn 31209 . . 3 (𝐽 ∈ SConn → 𝐽 ∈ PConn)
2 pconnconn 31213 . . 3 (𝐽 ∈ PConn → 𝐽 ∈ Conn)
31, 2syl 17 . 2 (𝐽 ∈ SConn → 𝐽 ∈ Conn)
4 eqid 2622 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5 eqid 2622 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
64, 5rerest 22607 . . . . . 6 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴))
7 resconn.1 . . . . . 6 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
86, 7syl6eqr 2674 . . . . 5 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = 𝐽)
98adantr 481 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ((TopOpen‘ℂfld) ↾t 𝐴) = 𝐽)
10 simpl 473 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐴 ⊆ ℝ)
11 ax-resscn 9993 . . . . . 6 ℝ ⊆ ℂ
1210, 11syl6ss 3615 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐴 ⊆ ℂ)
13 df-3an 1039 . . . . . 6 ((𝑥𝐴𝑦𝐴𝑡 ∈ (0[,]1)) ↔ ((𝑥𝐴𝑦𝐴) ∧ 𝑡 ∈ (0[,]1)))
14 oveq2 6658 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑡 · 𝑧) = (𝑡 · 𝑥))
15 oveq2 6658 . . . . . . . . . . . 12 (𝑤 = 𝑦 → ((1 − 𝑡) · 𝑤) = ((1 − 𝑡) · 𝑦))
1614, 15oveqan12d 6669 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
1716eleq1d 2686 . . . . . . . . . 10 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴))
1817ralbidv 2986 . . . . . . . . 9 ((𝑧 = 𝑥𝑤 = 𝑦) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴))
19 oveq2 6658 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑡 · 𝑧) = (𝑡 · 𝑦))
20 oveq2 6658 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((1 − 𝑡) · 𝑤) = ((1 − 𝑡) · 𝑥))
2119, 20oveqan12d 6669 . . . . . . . . . . 11 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)))
2221eleq1d 2686 . . . . . . . . . 10 ((𝑧 = 𝑦𝑤 = 𝑥) → (((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
2322ralbidv 2986 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
24 unitssre 12319 . . . . . . . . . . . . . . . . 17 (0[,]1) ⊆ ℝ
2524, 11sstri 3612 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℂ
26 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
2725, 26sseldi 3601 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
2812adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝐴 ⊆ ℂ)
29 simpr2 1068 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦𝐴)
3028, 29sseldd 3604 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦 ∈ ℂ)
3130adantr 481 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑦 ∈ ℂ)
3227, 31mulcld 10060 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (𝑠 · 𝑦) ∈ ℂ)
33 ax-1cn 9994 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
34 subcl 10280 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
3533, 27, 34sylancr 695 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
36 simpr1 1067 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥𝐴)
3728, 36sseldd 3604 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥 ∈ ℂ)
3837adantr 481 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
3935, 38mulcld 10060 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 𝑥) ∈ ℂ)
4032, 39addcomd 10238 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = (((1 − 𝑠) · 𝑥) + (𝑠 · 𝑦)))
41 nncan 10310 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − (1 − 𝑠)) = 𝑠)
4233, 27, 41sylancr 695 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − (1 − 𝑠)) = 𝑠)
4342oveq1d 6665 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((1 − (1 − 𝑠)) · 𝑦) = (𝑠 · 𝑦))
4443oveq2d 6666 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) = (((1 − 𝑠) · 𝑥) + (𝑠 · 𝑦)))
4540, 44eqtr4d 2659 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)))
46 iirev 22728 . . . . . . . . . . . . . 14 (𝑠 ∈ (0[,]1) → (1 − 𝑠) ∈ (0[,]1))
4746adantl 482 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ (0[,]1))
487eleq1i 2692 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ Conn ↔ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
49 reconn 22631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
5048, 49syl5bb 272 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝐽 ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
5150biimpa 501 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
5251r19.21bi 2932 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ 𝑥𝐴) → ∀𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
5352r19.21bi 2932 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
5453anasss 679 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴)
55543adantr3 1222 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑥[,]𝑦) ⊆ 𝐴)
5655adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑥[,]𝑦) ⊆ 𝐴)
57 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
5824, 57sseldi 3601 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
59 simplll 798 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝐴 ⊆ ℝ)
6036adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥𝐴)
6159, 60sseldd 3604 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ∈ ℝ)
6258, 61remulcld 10070 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑥) ∈ ℝ)
63 1re 10039 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
64 resubcl 10345 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
6563, 58, 64sylancr 695 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℝ)
6629adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦𝐴)
6759, 66sseldd 3604 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦 ∈ ℝ)
6865, 67remulcld 10070 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑦) ∈ ℝ)
6962, 68readdcld 10069 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ)
7058recnd 10068 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
71 pncan3 10289 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑡 + (1 − 𝑡)) = 1)
7270, 33, 71sylancl 694 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 + (1 − 𝑡)) = 1)
7372oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑥) = (1 · 𝑥))
7465recnd 10068 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
7537adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
7670, 74, 75adddird 10065 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑥) = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)))
7775mulid2d 10058 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 · 𝑥) = 𝑥)
7873, 76, 773eqtr3d 2664 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)) = 𝑥)
7965, 61remulcld 10070 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑥) ∈ ℝ)
80 0re 10040 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℝ
8180, 63elicc2i 12239 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
8257, 81sylib 208 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
8382simp3d 1075 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ≤ 1)
84 subge0 10541 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
8563, 58, 84sylancr 695 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
8683, 85mpbird 247 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (1 − 𝑡))
87 simplr3 1105 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥𝑦)
8861, 67, 65, 86, 87lemul2ad 10964 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑥) ≤ ((1 − 𝑡) · 𝑦))
8979, 68, 62, 88leadd2dd 10642 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)) ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
9078, 89eqbrtrrd 4677 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
9158, 67remulcld 10070 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑦) ∈ ℝ)
9282simp2d 1074 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ 𝑡)
9361, 67, 58, 92, 87lemul2ad 10964 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑥) ≤ (𝑡 · 𝑦))
9462, 91, 68, 93leadd1dd 10641 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)))
9572oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑦) = (1 · 𝑦))
9630adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦 ∈ ℂ)
9770, 74, 96adddird 10065 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑦) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)))
9896mulid2d 10058 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 · 𝑦) = 𝑦)
9995, 97, 983eqtr3d 2664 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)) = 𝑦)
10094, 99breqtrd 4679 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)
101 elicc2 12238 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦) ↔ (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ ∧ 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∧ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)))
10261, 67, 101syl2anc 693 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦) ↔ (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ ∧ 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∧ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)))
10369, 90, 100, 102mpbir3and 1245 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦))
10456, 103sseldd 3604 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
105104ralrimiva 2966 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
106105adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
107 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑡 = (1 − 𝑠) → (𝑡 · 𝑥) = ((1 − 𝑠) · 𝑥))
108 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑡 = (1 − 𝑠) → (1 − 𝑡) = (1 − (1 − 𝑠)))
109108oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑡 = (1 − 𝑠) → ((1 − 𝑡) · 𝑦) = ((1 − (1 − 𝑠)) · 𝑦))
110107, 109oveq12d 6668 . . . . . . . . . . . . . . 15 (𝑡 = (1 − 𝑠) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)))
111110eleq1d 2686 . . . . . . . . . . . . . 14 (𝑡 = (1 − 𝑠) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴 ↔ (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴))
112111rspcv 3305 . . . . . . . . . . . . 13 ((1 − 𝑠) ∈ (0[,]1) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴 → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴))
11347, 106, 112sylc 65 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴)
11445, 113eqeltrd 2701 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴)
115114ralrimiva 2966 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑠 ∈ (0[,]1)((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴)
116 oveq1 6657 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠 · 𝑦) = (𝑡 · 𝑦))
117 oveq2 6658 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → (1 − 𝑠) = (1 − 𝑡))
118117oveq1d 6665 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((1 − 𝑠) · 𝑥) = ((1 − 𝑡) · 𝑥))
119116, 118oveq12d 6668 . . . . . . . . . . . 12 (𝑠 = 𝑡 → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)))
120119eleq1d 2686 . . . . . . . . . . 11 (𝑠 = 𝑡 → (((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴 ↔ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
121120cbvralv 3171 . . . . . . . . . 10 (∀𝑠 ∈ (0[,]1)((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴)
122115, 121sylib 208 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴)
12318, 23, 10, 122, 105wloglei 10560 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
124123r19.21bi 2932 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
125124anasss 679 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ ((𝑥𝐴𝑦𝐴) ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
12613, 125sylan2b 492 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
127 eqid 2622 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
12812, 126, 4, 127cvxsconn 31225 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ SConn)
1299, 128eqeltrrd 2702 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐽 ∈ SConn)
130129ex 450 . 2 (𝐴 ⊆ ℝ → (𝐽 ∈ Conn → 𝐽 ∈ SConn))
1313, 130impbid2 216 1 (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574   class class class wbr 4653  ran crn 5115  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  (,)cioo 12175  [,]cicc 12178  t crest 16081  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  Conncconn 21214  PConncpconn 31201  SConncsconn 31202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-conn 21215  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pconn 31203  df-sconn 31204
This theorem is referenced by:  ioosconn  31229  iccsconn  31230  iccllysconn  31232
  Copyright terms: Public domain W3C validator