| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| seeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Se 𝐴 ↔ 𝑅 Se 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 3658 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 2 | sess2 5083 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Se 𝐴 → 𝑅 Se 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Se 𝐴 → 𝑅 Se 𝐵)) |
| 4 | eqimss 3657 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 5 | sess2 5083 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Se 𝐵 → 𝑅 Se 𝐴)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Se 𝐵 → 𝑅 Se 𝐴)) |
| 7 | 3, 6 | impbid 202 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Se 𝐴 ↔ 𝑅 Se 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ⊆ wss 3574 Se wse 5071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-in 3581 df-ss 3588 df-se 5074 |
| This theorem is referenced by: oieq2 8418 |
| Copyright terms: Public domain | W3C validator |