![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 792 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant2 1083 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: tfrlem5 7476 omeu 7665 4sqlem18 15666 vdwlem10 15694 mvrf1 19425 mdetuni0 20427 mdetmul 20429 tsmsxp 21958 ax5seglem3 25811 btwnconn1lem1 32194 btwnconn1lem3 32196 btwnconn1lem4 32197 btwnconn1lem5 32198 btwnconn1lem6 32199 btwnconn1lem7 32200 linethru 32260 lshpkrlem6 34402 athgt 34742 2llnjN 34853 dalaw 35172 cdlemb2 35327 4atexlemex6 35360 cdleme01N 35508 cdleme0ex2N 35511 cdleme7aa 35529 cdleme7e 35534 cdlemg33c0 35990 dihmeetlem3N 36594 pellex 37399 expmordi 37512 |
Copyright terms: Public domain | W3C validator |