Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem6 Structured version   Visualization version   GIF version

Theorem lshpkrlem6 34402
Description: Lemma for lshpkrex 34405. Show linearlity of 𝐺. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem6 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   + ,𝑙   𝐺,𝑙   𝐾,𝑙   𝑈,𝑙   𝑋,𝑙   𝑍,𝑙,𝑘,𝑥,𝑦   · ,𝑙   𝑢,𝑘,𝑣,𝑥,𝑦,𝑙
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝐷(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   + (𝑣,𝑢)   (𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   · (𝑣,𝑢)   𝑈(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝐾(𝑦,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝑉(𝑦,𝑣,𝑢,𝑘,𝑙)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝑋(𝑣,𝑢)   0 (𝑥,𝑦,𝑣,𝑢,𝑙)   𝑍(𝑣,𝑢)

Proof of Theorem lshpkrlem6
Dummy variables 𝑧 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.v . . 3 𝑉 = (Base‘𝑊)
2 lshpkrlem.a . . 3 + = (+g𝑊)
3 lshpkrlem.n . . 3 𝑁 = (LSpan‘𝑊)
4 lshpkrlem.p . . 3 = (LSSum‘𝑊)
5 lshpkrlem.h . . 3 𝐻 = (LSHyp‘𝑊)
6 lshpkrlem.w . . . 4 (𝜑𝑊 ∈ LVec)
76adantr 481 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑊 ∈ LVec)
8 lshpkrlem.u . . . 4 (𝜑𝑈𝐻)
98adantr 481 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑈𝐻)
10 lshpkrlem.z . . . 4 (𝜑𝑍𝑉)
1110adantr 481 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑍𝑉)
12 simpr2 1068 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑢𝑉)
13 lshpkrlem.e . . . 4 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
1413adantr 481 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
15 lshpkrlem.d . . 3 𝐷 = (Scalar‘𝑊)
16 lshpkrlem.k . . 3 𝐾 = (Base‘𝐷)
17 lshpkrlem.t . . 3 · = ( ·𝑠𝑊)
18 lshpkrlem.o . . 3 0 = (0g𝐷)
19 lshpkrlem.g . . 3 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
201, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19lshpkrlem3 34399 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
21 simpr3 1069 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑣𝑉)
221, 2, 3, 4, 5, 7, 9, 11, 21, 14, 15, 16, 17, 18, 19lshpkrlem3 34399 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
23 lveclmod 19106 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
247, 23syl 17 . . . 4 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑊 ∈ LMod)
25 simpr1 1067 . . . . 5 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑙𝐾)
261, 15, 17, 16lmodvscl 18880 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑢𝑉) → (𝑙 · 𝑢) ∈ 𝑉)
2724, 25, 12, 26syl3anc 1326 . . . 4 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝑙 · 𝑢) ∈ 𝑉)
281, 2lmodvacl 18877 . . . 4 ((𝑊 ∈ LMod ∧ (𝑙 · 𝑢) ∈ 𝑉𝑣𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
2924, 27, 21, 28syl3anc 1326 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
301, 2, 3, 4, 5, 7, 9, 11, 29, 14, 15, 16, 17, 18, 19lshpkrlem3 34399 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
31 3reeanv 3108 . . 3 (∃𝑟𝑈𝑠𝑈𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) ↔ (∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))))
32 simp1l 1085 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝜑)
33 simp1r1 1157 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑙𝐾)
34 simp1r2 1158 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢𝑉)
35 simp1r3 1159 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣𝑉)
36 simp2ll 1128 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟𝑈)
37 simp2lr 1129 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠𝑈)
38 simp2r 1088 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑧𝑈)
3937, 38jca 554 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑠𝑈𝑧𝑈))
40 simp31 1097 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
41 simp32 1098 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
42 simp33 1099 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
431, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 18, 19lshpkrlem5 34401 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
4432, 33, 34, 35, 36, 39, 40, 41, 42, 43syl333anc 1358 . . . . . . 7 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
45443exp 1264 . . . . . 6 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) → ((𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
4645expdimp 453 . . . . 5 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ (𝑟𝑈𝑠𝑈)) → (𝑧𝑈 → ((𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
4746rexlimdv 3030 . . . 4 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ (𝑟𝑈𝑠𝑈)) → (∃𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
4847rexlimdvva 3038 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (∃𝑟𝑈𝑠𝑈𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
4931, 48syl5bir 233 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ((∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
5020, 22, 30, 49mp3and 1427 1 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  {csn 4177  cmpt 4729  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  LSSumclsm 18049  LModclmod 18863  LSpanclspn 18971  LVecclvec 19102  LSHypclsh 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lshyp 34264
This theorem is referenced by:  lshpkrcl  34403
  Copyright terms: Public domain W3C validator