| Step | Hyp | Ref
| Expression |
| 1 | | tfrlem.1 |
. . 3
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 2 | | vex 3203 |
. . 3
⊢ 𝑔 ∈ V |
| 3 | 1, 2 | tfrlem3a 7473 |
. 2
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎)))) |
| 4 | | vex 3203 |
. . 3
⊢ ℎ ∈ V |
| 5 | 1, 4 | tfrlem3a 7473 |
. 2
⊢ (ℎ ∈ 𝐴 ↔ ∃𝑤 ∈ On (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) |
| 6 | | reeanv 3107 |
. . 3
⊢
(∃𝑧 ∈ On
∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ↔ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ ∃𝑤 ∈ On (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎))))) |
| 7 | | simp2ll 1128 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑔 Fn 𝑧) |
| 8 | | simp3l 1089 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥𝑔𝑢) |
| 9 | | fnbr 5993 |
. . . . . . . . 9
⊢ ((𝑔 Fn 𝑧 ∧ 𝑥𝑔𝑢) → 𝑥 ∈ 𝑧) |
| 10 | 7, 8, 9 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥 ∈ 𝑧) |
| 11 | | simp2rl 1130 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ℎ Fn 𝑤) |
| 12 | | simp3r 1090 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥ℎ𝑣) |
| 13 | | fnbr 5993 |
. . . . . . . . 9
⊢ ((ℎ Fn 𝑤 ∧ 𝑥ℎ𝑣) → 𝑥 ∈ 𝑤) |
| 14 | 11, 12, 13 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥 ∈ 𝑤) |
| 15 | 10, 14 | elind 3798 |
. . . . . . 7
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥 ∈ (𝑧 ∩ 𝑤)) |
| 16 | | onin 5754 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧 ∩ 𝑤) ∈ On) |
| 17 | 16 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑧 ∩ 𝑤) ∈ On) |
| 18 | | fnfun 5988 |
. . . . . . . . . 10
⊢ (𝑔 Fn 𝑧 → Fun 𝑔) |
| 19 | 7, 18 | syl 17 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → Fun 𝑔) |
| 20 | | inss1 3833 |
. . . . . . . . . 10
⊢ (𝑧 ∩ 𝑤) ⊆ 𝑧 |
| 21 | | fndm 5990 |
. . . . . . . . . . 11
⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) |
| 22 | 7, 21 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → dom 𝑔 = 𝑧) |
| 23 | 20, 22 | syl5sseqr 3654 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑧 ∩ 𝑤) ⊆ dom 𝑔) |
| 24 | 19, 23 | jca 554 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (Fun 𝑔 ∧ (𝑧 ∩ 𝑤) ⊆ dom 𝑔)) |
| 25 | | fnfun 5988 |
. . . . . . . . . 10
⊢ (ℎ Fn 𝑤 → Fun ℎ) |
| 26 | 11, 25 | syl 17 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → Fun ℎ) |
| 27 | | inss2 3834 |
. . . . . . . . . 10
⊢ (𝑧 ∩ 𝑤) ⊆ 𝑤 |
| 28 | | fndm 5990 |
. . . . . . . . . . 11
⊢ (ℎ Fn 𝑤 → dom ℎ = 𝑤) |
| 29 | 11, 28 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → dom ℎ = 𝑤) |
| 30 | 27, 29 | syl5sseqr 3654 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑧 ∩ 𝑤) ⊆ dom ℎ) |
| 31 | 26, 30 | jca 554 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (Fun ℎ ∧ (𝑧 ∩ 𝑤) ⊆ dom ℎ)) |
| 32 | | simp2lr 1129 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) |
| 33 | | ssralv 3666 |
. . . . . . . . 9
⊢ ((𝑧 ∩ 𝑤) ⊆ 𝑧 → (∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎)))) |
| 34 | 20, 32, 33 | mpsyl 68 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) |
| 35 | | simp2rr 1131 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎))) |
| 36 | | ssralv 3666 |
. . . . . . . . 9
⊢ ((𝑧 ∩ 𝑤) ⊆ 𝑤 → (∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) |
| 37 | 27, 35, 36 | mpsyl 68 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎))) |
| 38 | 17, 24, 31, 34, 37 | tfrlem1 7472 |
. . . . . . 7
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(𝑔‘𝑎) = (ℎ‘𝑎)) |
| 39 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (𝑔‘𝑎) = (𝑔‘𝑥)) |
| 40 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (ℎ‘𝑎) = (ℎ‘𝑥)) |
| 41 | 39, 40 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → ((𝑔‘𝑎) = (ℎ‘𝑎) ↔ (𝑔‘𝑥) = (ℎ‘𝑥))) |
| 42 | 41 | rspcv 3305 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑧 ∩ 𝑤) → (∀𝑎 ∈ (𝑧 ∩ 𝑤)(𝑔‘𝑎) = (ℎ‘𝑎) → (𝑔‘𝑥) = (ℎ‘𝑥))) |
| 43 | 15, 38, 42 | sylc 65 |
. . . . . 6
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑔‘𝑥) = (ℎ‘𝑥)) |
| 44 | | funbrfv 6234 |
. . . . . . 7
⊢ (Fun
𝑔 → (𝑥𝑔𝑢 → (𝑔‘𝑥) = 𝑢)) |
| 45 | 19, 8, 44 | sylc 65 |
. . . . . 6
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑔‘𝑥) = 𝑢) |
| 46 | | funbrfv 6234 |
. . . . . . 7
⊢ (Fun
ℎ → (𝑥ℎ𝑣 → (ℎ‘𝑥) = 𝑣)) |
| 47 | 26, 12, 46 | sylc 65 |
. . . . . 6
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (ℎ‘𝑥) = 𝑣) |
| 48 | 43, 45, 47 | 3eqtr3d 2664 |
. . . . 5
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑢 = 𝑣) |
| 49 | 48 | 3exp 1264 |
. . . 4
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣))) |
| 50 | 49 | rexlimivv 3036 |
. . 3
⊢
(∃𝑧 ∈ On
∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
| 51 | 6, 50 | sylbir 225 |
. 2
⊢
((∃𝑧 ∈ On
(𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ ∃𝑤 ∈ On (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
| 52 | 3, 5, 51 | syl2anb 496 |
1
⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |