![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp3ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3ll | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 790 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant3 1084 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: f1oiso2 6602 omeu 7665 ntrivcvgmul 14634 tsmsxp 21958 tgqioo 22603 ovolunlem2 23266 plyadd 23973 plymul 23974 coeeu 23981 tghilberti2 25533 nosupbnd1lem2 31855 btwnconn1lem2 32195 btwnconn1lem3 32196 btwnconn1lem12 32205 athgt 34742 2llnjN 34853 4atlem12b 34897 lncmp 35069 cdlema2N 35078 cdlemc2 35479 cdleme5 35527 cdleme11a 35547 cdleme21ct 35617 cdleme21 35625 cdleme22eALTN 35633 cdleme24 35640 cdleme27cl 35654 cdleme27a 35655 cdleme28 35661 cdleme36a 35748 cdleme42b 35766 cdleme48fvg 35788 cdlemf 35851 cdlemk39 36204 cdlemkid1 36210 dihlsscpre 36523 dihord4 36547 dihord5apre 36551 dihmeetlem20N 36615 mapdh9a 37079 pellex 37399 jm2.27 37575 |
Copyright terms: Public domain | W3C validator |