Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupbnd1lem2 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem2 31855
Description: Lemma for nosupbnd1 31860. When there is no maximum, if any member of 𝐴 is a prolongment of 𝑆, then so are all elements of 𝐴 above it. (Contributed by Scott Fenton, 5-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑊 ↾ dom 𝑆) = 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑊   𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑔)

Proof of Theorem nosupbnd1lem2
StepHypRef Expression
1 simp3rr 1135 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ 𝑊 <s 𝑈)
2 simp2l 1087 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝐴 No )
3 simp3rl 1134 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑊𝐴)
42, 3sseldd 3604 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑊 No )
5 simp3ll 1132 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑈𝐴)
62, 5sseldd 3604 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑈 No )
7 nosupbnd1.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
87nosupno 31849 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
983ad2ant2 1083 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑆 No )
10 nodmon 31803 . . . . . 6 (𝑆 No → dom 𝑆 ∈ On)
119, 10syl 17 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → dom 𝑆 ∈ On)
12 sltres 31815 . . . . 5 ((𝑊 No 𝑈 No ∧ dom 𝑆 ∈ On) → ((𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆) → 𝑊 <s 𝑈))
134, 6, 11, 12syl3anc 1326 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ((𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆) → 𝑊 <s 𝑈))
141, 13mtod 189 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ (𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆))
15 simp3lr 1133 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑈 ↾ dom 𝑆) = 𝑆)
1615breq2d 4665 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ((𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆) ↔ (𝑊 ↾ dom 𝑆) <s 𝑆))
1714, 16mtbid 314 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ (𝑊 ↾ dom 𝑆) <s 𝑆)
187nosupbnd1lem1 31854 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑊𝐴) → ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))
193, 18syld3an3 1371 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))
20 noreson 31813 . . . 4 ((𝑊 No ∧ dom 𝑆 ∈ On) → (𝑊 ↾ dom 𝑆) ∈ No )
214, 11, 20syl2anc 693 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑊 ↾ dom 𝑆) ∈ No )
22 sltso 31827 . . . 4 <s Or No
23 sotrieq2 5063 . . . 4 (( <s Or No ∧ ((𝑊 ↾ dom 𝑆) ∈ No 𝑆 No )) → ((𝑊 ↾ dom 𝑆) = 𝑆 ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))))
2422, 23mpan 706 . . 3 (((𝑊 ↾ dom 𝑆) ∈ No 𝑆 No ) → ((𝑊 ↾ dom 𝑆) = 𝑆 ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))))
2521, 9, 24syl2anc 693 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ((𝑊 ↾ dom 𝑆) = 𝑆 ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))))
2617, 19, 25mpbir2and 957 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑊 ↾ dom 𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200  cun 3572  wss 3574  ifcif 4086  {csn 4177  cop 4183   class class class wbr 4653  cmpt 4729   Or wor 5034  dom cdm 5114  cres 5116  Oncon0 5723  suc csuc 5725  cio 5849  cfv 5888  crio 6610  2𝑜c2o 7554   No csur 31793   <s cslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798
This theorem is referenced by:  nosupbnd1lem3  31856  nosupbnd1lem4  31857  nosupbnd1lem5  31858
  Copyright terms: Public domain W3C validator