MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgqioo Structured version   Visualization version   GIF version

Theorem tgqioo 22603
Description: The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
tgqioo.1 𝑄 = (topGen‘((,) “ (ℚ × ℚ)))
Assertion
Ref Expression
tgqioo (topGen‘ran (,)) = 𝑄

Proof of Theorem tgqioo
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgqioo.1 . 2 𝑄 = (topGen‘((,) “ (ℚ × ℚ)))
2 imassrn 5477 . . 3 ((,) “ (ℚ × ℚ)) ⊆ ran (,)
3 ioof 12271 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
4 ffn 6045 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
53, 4ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
6 simpll 790 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 ∈ ℝ*)
7 elioo1 12215 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑧 ∈ (𝑥(,)𝑦) ↔ (𝑧 ∈ ℝ*𝑥 < 𝑧𝑧 < 𝑦)))
87biimpa 501 . . . . . . . . . . 11 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (𝑧 ∈ ℝ*𝑥 < 𝑧𝑧 < 𝑦))
98simp1d 1073 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 ∈ ℝ*)
108simp2d 1074 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 < 𝑧)
11 qbtwnxr 12031 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑧 ∈ ℝ*𝑥 < 𝑧) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧))
126, 9, 10, 11syl3anc 1326 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧))
13 simplr 792 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑦 ∈ ℝ*)
148simp3d 1075 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 < 𝑦)
15 qbtwnxr 12031 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑧 < 𝑦) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦))
169, 13, 14, 15syl3anc 1326 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦))
17 reeanv 3107 . . . . . . . . . 10 (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) ↔ (∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦)))
18 df-ov 6653 . . . . . . . . . . . . . 14 (𝑢(,)𝑣) = ((,)‘⟨𝑢, 𝑣⟩)
19 opelxpi 5148 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → ⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ))
20193ad2ant2 1083 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ))
21 ffun 6048 . . . . . . . . . . . . . . . . 17 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
223, 21ax-mp 5 . . . . . . . . . . . . . . . 16 Fun (,)
23 qssre 11798 . . . . . . . . . . . . . . . . . . 19 ℚ ⊆ ℝ
24 ressxr 10083 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
2523, 24sstri 3612 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℝ*
26 xpss12 5225 . . . . . . . . . . . . . . . . . 18 ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*))
2725, 25, 26mp2an 708 . . . . . . . . . . . . . . . . 17 (ℚ × ℚ) ⊆ (ℝ* × ℝ*)
283fdmi 6052 . . . . . . . . . . . . . . . . 17 dom (,) = (ℝ* × ℝ*)
2927, 28sseqtr4i 3638 . . . . . . . . . . . . . . . 16 (ℚ × ℚ) ⊆ dom (,)
30 funfvima2 6493 . . . . . . . . . . . . . . . 16 ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → (⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ))))
3122, 29, 30mp2an 708 . . . . . . . . . . . . . . 15 (⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ)))
3220, 31syl 17 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ)))
3318, 32syl5eqel 2705 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ∈ ((,) “ (ℚ × ℚ)))
3493ad2ant1 1082 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 ∈ ℝ*)
35 simp3lr 1133 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 < 𝑧)
36 simp3rl 1134 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 < 𝑣)
37 simp2l 1087 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 ∈ ℚ)
3825, 37sseldi 3601 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 ∈ ℝ*)
39 simp2r 1088 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 ∈ ℚ)
4025, 39sseldi 3601 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 ∈ ℝ*)
41 elioo1 12215 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℝ*𝑣 ∈ ℝ*) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ*𝑢 < 𝑧𝑧 < 𝑣)))
4238, 40, 41syl2anc 693 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ*𝑢 < 𝑧𝑧 < 𝑣)))
4334, 35, 36, 42mpbir3and 1245 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 ∈ (𝑢(,)𝑣))
4463ad2ant1 1082 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥 ∈ ℝ*)
45 simp3ll 1132 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥 < 𝑢)
46 xrltle 11982 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑢 ∈ ℝ*) → (𝑥 < 𝑢𝑥𝑢))
4744, 38, 46syl2anc 693 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑥 < 𝑢𝑥𝑢))
4845, 47mpd 15 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥𝑢)
49 iooss1 12210 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑥𝑢) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣))
5044, 48, 49syl2anc 693 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣))
51133ad2ant1 1082 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑦 ∈ ℝ*)
52 simp3rr 1135 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 < 𝑦)
53 xrltle 11982 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑣 < 𝑦𝑣𝑦))
5440, 51, 53syl2anc 693 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑣 < 𝑦𝑣𝑦))
5552, 54mpd 15 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣𝑦)
56 iooss2 12211 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ*𝑣𝑦) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦))
5751, 55, 56syl2anc 693 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦))
5850, 57sstrd 3613 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))
59 eleq2 2690 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢(,)𝑣) → (𝑧𝑤𝑧 ∈ (𝑢(,)𝑣)))
60 sseq1 3626 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢(,)𝑣) → (𝑤 ⊆ (𝑥(,)𝑦) ↔ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦)))
6159, 60anbi12d 747 . . . . . . . . . . . . . 14 (𝑤 = (𝑢(,)𝑣) → ((𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)) ↔ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))))
6261rspcev 3309 . . . . . . . . . . . . 13 (((𝑢(,)𝑣) ∈ ((,) “ (ℚ × ℚ)) ∧ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
6333, 43, 58, 62syl12anc 1324 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
64633exp 1264 . . . . . . . . . . 11 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → (((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))))
6564rexlimdvv 3037 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
6617, 65syl5bir 233 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
6712, 16, 66mp2and 715 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
6867ralrimiva 2966 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
69 qtopbas 22563 . . . . . . . 8 ((,) “ (ℚ × ℚ)) ∈ TopBases
70 eltg2b 20763 . . . . . . . 8 (((,) “ (ℚ × ℚ)) ∈ TopBases → ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
7169, 70ax-mp 5 . . . . . . 7 ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
7268, 71sylibr 224 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))))
7372rgen2a 2977 . . . . 5 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ)))
74 ffnov 6764 . . . . 5 ((,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ))) ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ)))))
755, 73, 74mpbir2an 955 . . . 4 (,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ)))
76 frn 6053 . . . 4 ((,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ))) → ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ))))
7775, 76ax-mp 5 . . 3 ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ)))
78 2basgen 20794 . . 3 ((((,) “ (ℚ × ℚ)) ⊆ ran (,) ∧ ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ)))) → (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘ran (,)))
792, 77, 78mp2an 708 . 2 (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘ran (,))
801, 79eqtr2i 2645 1 (topGen‘ran (,)) = 𝑄
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574  𝒫 cpw 4158  cop 4183   class class class wbr 4653   × cxp 5112  dom cdm 5114  ran crn 5115  cima 5117  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  *cxr 10073   < clt 10074  cle 10075  cq 11788  (,)cioo 12175  topGenctg 16098  TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179  df-topgen 16104  df-bases 20750
This theorem is referenced by:  re2ndc  22604  opnmblALT  23371  mbfimaopnlem  23422  tgqioo2  39774
  Copyright terms: Public domain W3C validator