| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3r1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3r1 | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1067 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1084 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: nllyrest 21289 segletr 32221 cdlemblem 35079 cdleme21 35625 cdleme22b 35629 cdleme40m 35755 cdlemg34 36000 cdlemk5u 36149 cdlemk6u 36150 cdlemk21N 36161 cdlemk20 36162 cdlemk26b-3 36193 cdlemk26-3 36194 cdlemk28-3 36196 cdlemk37 36202 cdlemky 36214 cdlemk11t 36234 cdlemkyyN 36250 dihmeetlem20N 36615 stoweidlem56 40273 |
| Copyright terms: Public domain | W3C validator |