Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem56 Structured version   Visualization version   GIF version

Theorem stoweidlem56 40273
Description: This theorem proves Lemma 1 in [BrosowskiDeutsh] p. 90. Here 𝑍 is used to represent t0 in the paper, 𝑣 is used to represent 𝑉 in the paper, and 𝑒 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem56.1 𝑡𝑈
stoweidlem56.2 𝑡𝜑
stoweidlem56.3 𝐾 = (topGen‘ran (,))
stoweidlem56.4 (𝜑𝐽 ∈ Comp)
stoweidlem56.5 𝑇 = 𝐽
stoweidlem56.6 𝐶 = (𝐽 Cn 𝐾)
stoweidlem56.7 (𝜑𝐴𝐶)
stoweidlem56.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem56.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem56.10 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
stoweidlem56.11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem56.12 (𝜑𝑈𝐽)
stoweidlem56.13 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem56 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Distinct variable groups:   𝑒,𝑓,𝑔,𝑡,𝐴   𝑣,𝑒,𝑥,𝑡,𝐴   𝑦,𝑒,𝑓,𝑡,𝐴   𝑔,𝐽,𝑡   𝑇,𝑒,𝑓,𝑔,𝑡   𝑈,𝑒,𝑓,𝑔   𝑒,𝑍,𝑓,𝑔,𝑡   𝜑,𝑒,𝑓,𝑔   𝑓,𝑞,𝑔,𝑡,𝐴,𝑟   𝑦,𝑞,𝑇   𝑈,𝑞,𝑦   𝑍,𝑞,𝑦   𝜑,𝑞,𝑦,𝑟   𝑇,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐾   𝑣,𝐽   𝑣,𝑇,𝑥   𝑣,𝑈,𝑥   𝑣,𝑍
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡)   𝐶(𝑥,𝑦,𝑣,𝑡,𝑒,𝑓,𝑔,𝑟,𝑞)   𝑈(𝑡)   𝐽(𝑥,𝑦,𝑒,𝑓,𝑟,𝑞)   𝐾(𝑥,𝑦,𝑣,𝑒,𝑓,𝑔,𝑟,𝑞)   𝑍(𝑥,𝑟)

Proof of Theorem stoweidlem56
Dummy variables 𝑑 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem56.1 . . . . 5 𝑡𝑈
2 stoweidlem56.2 . . . . 5 𝑡𝜑
3 stoweidlem56.3 . . . . 5 𝐾 = (topGen‘ran (,))
4 stoweidlem56.4 . . . . 5 (𝜑𝐽 ∈ Comp)
5 stoweidlem56.5 . . . . 5 𝑇 = 𝐽
6 stoweidlem56.6 . . . . 5 𝐶 = (𝐽 Cn 𝐾)
7 stoweidlem56.7 . . . . 5 (𝜑𝐴𝐶)
8 stoweidlem56.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9 stoweidlem56.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
10 stoweidlem56.10 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
11 stoweidlem56.11 . . . . 5 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
12 stoweidlem56.12 . . . . 5 (𝜑𝑈𝐽)
13 stoweidlem56.13 . . . . 5 (𝜑𝑍𝑈)
14 eqid 2622 . . . . 5 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
15 eqid 2622 . . . . 5 {𝑤𝐽 ∣ ∃ ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} = {𝑤𝐽 ∣ ∃ ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem55 40272 . . . 4 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
17 df-rex 2918 . . . 4 (∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
1816, 17sylib 208 . . 3 (𝜑 → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
19 simpl 473 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → 𝜑)
20 simprl 794 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → 𝑝𝐴)
21 simprr3 1111 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
22 nfv 1843 . . . . . . . . 9 𝑡 𝑝𝐴
23 nfra1 2941 . . . . . . . . 9 𝑡𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)
242, 22, 23nf3an 1831 . . . . . . . 8 𝑡(𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
2543ad2ant1 1082 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝐽 ∈ Comp)
267sselda 3603 . . . . . . . . . 10 ((𝜑𝑝𝐴) → 𝑝𝐶)
2726, 6syl6eleq 2711 . . . . . . . . 9 ((𝜑𝑝𝐴) → 𝑝 ∈ (𝐽 Cn 𝐾))
28273adant3 1081 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝑝 ∈ (𝐽 Cn 𝐾))
29 simp3 1063 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
30123ad2ant1 1082 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝑈𝐽)
311, 24, 3, 5, 25, 28, 29, 30stoweidlem28 40245 . . . . . . 7 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
3219, 20, 21, 31syl3anc 1326 . . . . . 6 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
33 simpr1 1067 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑑 ∈ ℝ+)
34 simpr2 1068 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑑 < 1)
35 simplrl 800 . . . . . . . . . 10 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑝𝐴)
36 simprr1 1109 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
3736adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
38 simprr2 1110 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → (𝑝𝑍) = 0)
3938adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑝𝑍) = 0)
40 simpr3 1069 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
4137, 39, 403jca 1242 . . . . . . . . . 10 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
4235, 41jca 554 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))
4333, 34, 423jca 1242 . . . . . . . 8 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
4443ex 450 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)) → (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4544eximdv 1846 . . . . . 6 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → (∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4632, 45mpd 15 . . . . 5 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
4746ex 450 . . . 4 (𝜑 → ((𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4847eximdv 1846 . . 3 (𝜑 → (∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))) → ∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4918, 48mpd 15 . 2 (𝜑 → ∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
50 nfv 1843 . . . . . . 7 𝑡 𝑑 ∈ ℝ+
51 nfv 1843 . . . . . . 7 𝑡 𝑑 < 1
52 nfra1 2941 . . . . . . . . 9 𝑡𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1)
53 nfv 1843 . . . . . . . . 9 𝑡(𝑝𝑍) = 0
54 nfra1 2941 . . . . . . . . 9 𝑡𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)
5552, 53, 54nf3an 1831 . . . . . . . 8 𝑡(∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
5622, 55nfan 1828 . . . . . . 7 𝑡(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
5750, 51, 56nf3an 1831 . . . . . 6 𝑡(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))
582, 57nfan 1828 . . . . 5 𝑡(𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
59 nfcv 2764 . . . . 5 𝑡𝑝
60 eqid 2622 . . . . 5 {𝑡𝑇 ∣ (𝑝𝑡) < (𝑑 / 2)} = {𝑡𝑇 ∣ (𝑝𝑡) < (𝑑 / 2)}
617adantr 481 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝐴𝐶)
6283adant1r 1319 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
6393adant1r 1319 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6410adantlr 751 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
65 simpr1 1067 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑑 ∈ ℝ+)
66 simpr2 1068 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑑 < 1)
6712adantr 481 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑈𝐽)
6813adantr 481 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑍𝑈)
69 simpr3l 1122 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑝𝐴)
70 simp3r1 1169 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
7170adantl 482 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
72 simp3r2 1170 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → (𝑝𝑍) = 0)
7372adantl 482 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → (𝑝𝑍) = 0)
74 simp3r3 1171 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
7574adantl 482 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
761, 58, 59, 3, 60, 5, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75stoweidlem52 40269 . . . 4 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
7776ex 450 . . 3 (𝜑 → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))))
7877exlimdvv 1862 . 2 (𝜑 → (∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))))
7949, 78mpd 15 1 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wnf 1708  wcel 1990  wnfc 2751  wne 2794  wral 2912  wrex 2913  {crab 2916  cdif 3571  wss 3574   cuni 4436   class class class wbr 4653  cmpt 4729  ran crn 5115  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  +crp 11832  (,)cioo 12175  topGenctg 16098   Cn ccn 21028  Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  stoweidlem57  40274
  Copyright terms: Public domain W3C validator