Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk11t Structured version   Visualization version   GIF version

Theorem cdlemk11t 36234
Description: Part of proof of Lemma K of [Crawley] p. 118. Eq. 5, line 36, p. 119. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 21-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk11t ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐺 / 𝑔𝑋𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅‘(𝐼𝐺))))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk11t
StepHypRef Expression
1 simp11l 1172 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐾 ∈ HL)
2 simp11r 1173 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝑊𝐻)
3 cdlemk5.b . . . 4 𝐵 = (Base‘𝐾)
4 cdlemk5.h . . . 4 𝐻 = (LHyp‘𝐾)
5 cdlemk5.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 cdlemk5.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
73, 4, 5, 6cdlemftr3 35853 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑏𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼))))
81, 2, 7syl2anc 693 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ∃𝑏𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼))))
9 nfv 1843 . . 3 𝑏(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵)))
10 nfcv 2764 . . . . . 6 𝑏𝐺
11 cdlemk5.x . . . . . . 7 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
12 nfra1 2941 . . . . . . . 8 𝑏𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌)
13 nfcv 2764 . . . . . . . 8 𝑏𝑇
1412, 13nfriota 6620 . . . . . . 7 𝑏(𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
1511, 14nfcxfr 2762 . . . . . 6 𝑏𝑋
1610, 15nfcsb 3551 . . . . 5 𝑏𝐺 / 𝑔𝑋
17 nfcv 2764 . . . . 5 𝑏𝑃
1816, 17nffv 6198 . . . 4 𝑏(𝐺 / 𝑔𝑋𝑃)
19 nfcv 2764 . . . 4 𝑏
20 nfcv 2764 . . . . . . 7 𝑏𝐼
2120, 15nfcsb 3551 . . . . . 6 𝑏𝐼 / 𝑔𝑋
2221, 17nffv 6198 . . . . 5 𝑏(𝐼 / 𝑔𝑋𝑃)
23 nfcv 2764 . . . . 5 𝑏
24 nfcv 2764 . . . . 5 𝑏(𝑅‘(𝐼𝐺))
2522, 23, 24nfov 6676 . . . 4 𝑏((𝐼 / 𝑔𝑋𝑃) (𝑅‘(𝐼𝐺)))
2618, 19, 25nfbr 4699 . . 3 𝑏(𝐺 / 𝑔𝑋𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅‘(𝐼𝐺)))
27 simp11 1091 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))))
28 simp12 1092 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
29 simp2 1062 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → 𝑏𝑇)
30 simp3l 1089 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → 𝑏 ≠ ( I ↾ 𝐵))
31 simp3r1 1169 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → (𝑅𝑏) ≠ (𝑅𝐹))
32 simp3r2 1170 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → (𝑅𝑏) ≠ (𝑅𝐺))
3330, 31, 323jca 1242 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))
34 simp13l 1176 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → 𝐼𝑇)
35 simp13r 1177 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → 𝐼 ≠ ( I ↾ 𝐵))
36 simp3r3 1171 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → (𝑅𝑏) ≠ (𝑅𝐼))
3734, 35, 363jca 1242 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))
38 cdlemk5.l . . . . . 6 = (le‘𝐾)
39 cdlemk5.j . . . . . 6 = (join‘𝐾)
40 cdlemk5.m . . . . . 6 = (meet‘𝐾)
41 cdlemk5.a . . . . . 6 𝐴 = (Atoms‘𝐾)
42 cdlemk5.z . . . . . 6 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
43 cdlemk5.y . . . . . 6 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
443, 38, 39, 40, 41, 4, 5, 6, 42, 43, 11cdlemk11tc 36233 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → (𝐺 / 𝑔𝑋𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅‘(𝐼𝐺))))
4527, 28, 29, 33, 37, 44syl113anc 1338 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → (𝐺 / 𝑔𝑋𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅‘(𝐼𝐺))))
46453exp 1264 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑏𝑇 → ((𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼))) → (𝐺 / 𝑔𝑋𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅‘(𝐼𝐺))))))
479, 26, 46rexlimd 3026 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (∃𝑏𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑅𝑏) ≠ (𝑅𝐼))) → (𝐺 / 𝑔𝑋𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅‘(𝐼𝐺)))))
488, 47mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐺 / 𝑔𝑋𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅‘(𝐼𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  csb 3533   class class class wbr 4653   I cid 5023  ccnv 5113  cres 5116  ccom 5118  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  meetcmee 16945  Atomscatm 34550  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  cdlemk45  36235
  Copyright terms: Public domain W3C validator