![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl33 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpl33 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp33 1099 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
2 | 1 | adantr 481 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: ax5seglem3a 25810 ax5seg 25818 elwwlks2ons3 26848 br8d 29422 br8 31646 nosupres 31853 cgrextend 32115 segconeq 32117 trisegint 32135 ifscgr 32151 cgrsub 32152 btwnxfr 32163 seglecgr12im 32217 segletr 32221 atbtwn 34732 4atlem10b 34891 4atlem11 34895 4atlem12 34898 2lplnj 34906 paddasslem4 35109 paddasslem7 35112 pmodlem1 35132 4atex2 35363 trlval3 35474 arglem1N 35477 cdleme0moN 35512 cdleme20 35612 cdleme21j 35624 cdleme28c 35660 cdleme38n 35752 cdlemg6c 35908 cdlemg6 35911 cdlemg7N 35914 cdlemg16 35945 cdlemg16ALTN 35946 cdlemg16zz 35948 cdlemg20 35973 cdlemg22 35975 cdlemg37 35977 cdlemg31d 35988 cdlemg29 35993 cdlemg33b 35995 cdlemg33 35999 cdlemg46 36023 cdlemk25-3 36192 |
Copyright terms: Public domain | W3C validator |