MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2ons3 Structured version   Visualization version   GIF version

Theorem elwwlks2ons3 26848
Description: For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypothesis
Ref Expression
elwwlks2ons3.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2ons3 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐺,𝑏   𝑈,𝑏   𝑉,𝑏   𝑊,𝑏

Proof of Theorem elwwlks2ons3
StepHypRef Expression
1 simpr 477 . . . . 5 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
2 elwwlks2ons3.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
32wwlknon 26742 . . . . . . . 8 ((𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶)))
433adant1 1079 . . . . . . 7 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶)))
5 wwlknbp2 26752 . . . . . . . . . 10 (𝑊 ∈ (2 WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (2 + 1)))
6 2p1e3 11151 . . . . . . . . . . . 12 (2 + 1) = 3
76eqeq2i 2634 . . . . . . . . . . 11 ((#‘𝑊) = (2 + 1) ↔ (#‘𝑊) = 3)
8 1ex 10035 . . . . . . . . . . . . . . . . 17 1 ∈ V
98tpid2 4304 . . . . . . . . . . . . . . . 16 1 ∈ {0, 1, 2}
10 oveq2 6658 . . . . . . . . . . . . . . . . 17 ((#‘𝑊) = 3 → (0..^(#‘𝑊)) = (0..^3))
11 fzo0to3tp 12554 . . . . . . . . . . . . . . . . 17 (0..^3) = {0, 1, 2}
1210, 11syl6eq 2672 . . . . . . . . . . . . . . . 16 ((#‘𝑊) = 3 → (0..^(#‘𝑊)) = {0, 1, 2})
139, 12syl5eleqr 2708 . . . . . . . . . . . . . . 15 ((#‘𝑊) = 3 → 1 ∈ (0..^(#‘𝑊)))
14 wrdsymbcl 13318 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ∈ (0..^(#‘𝑊))) → (𝑊‘1) ∈ (Vtx‘𝐺))
1513, 14sylan2 491 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) → (𝑊‘1) ∈ (Vtx‘𝐺))
16153ad2ant1 1082 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → (𝑊‘1) ∈ (Vtx‘𝐺))
17 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) → (#‘𝑊) = 3)
18173ad2ant1 1082 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → (#‘𝑊) = 3)
1918adantr 481 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (#‘𝑊) = 3)
20 simpl 473 . . . . . . . . . . . . . . . . . 18 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘0) = 𝐴)
21 eqidd 2623 . . . . . . . . . . . . . . . . . 18 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘1) = (𝑊‘1))
22 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘2) = 𝐶)
2320, 21, 223jca 1242 . . . . . . . . . . . . . . . . 17 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
24233ad2ant2 1083 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
2524adantr 481 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
262eqcomi 2631 . . . . . . . . . . . . . . . . . . . . . 22 (Vtx‘𝐺) = 𝑉
2726wrdeqi 13328 . . . . . . . . . . . . . . . . . . . . 21 Word (Vtx‘𝐺) = Word 𝑉
2827eleq2i 2693 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉)
2928biimpi 206 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
3029adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) → 𝑊 ∈ Word 𝑉)
31303ad2ant1 1082 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → 𝑊 ∈ Word 𝑉)
3231adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word 𝑉)
33 simpl32 1143 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐴𝑉)
3426eleq2i 2693 . . . . . . . . . . . . . . . . . 18 ((𝑊‘1) ∈ (Vtx‘𝐺) ↔ (𝑊‘1) ∈ 𝑉)
3534biimpi 206 . . . . . . . . . . . . . . . . 17 ((𝑊‘1) ∈ (Vtx‘𝐺) → (𝑊‘1) ∈ 𝑉)
3635adantl 482 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊‘1) ∈ 𝑉)
37 simpl33 1144 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐶𝑉)
38 eqwrds3 13704 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉 ∧ (𝑊‘1) ∈ 𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
3932, 33, 36, 37, 38syl13anc 1328 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
4019, 25, 39mpbir2and 957 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
4140, 36jca 554 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
4216, 41mpdan 702 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
43423exp 1264 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
447, 43sylan2b 492 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
455, 44syl 17 . . . . . . . . 9 (𝑊 ∈ (2 WWalksN 𝐺) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
46453impib 1262 . . . . . . . 8 ((𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
4746com12 32 . . . . . . 7 ((𝐺𝑈𝐴𝑉𝐶𝑉) → ((𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
484, 47sylbid 230 . . . . . 6 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
4948imp 445 . . . . 5 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
50 anass 681 . . . . 5 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
511, 49, 50sylanbrc 698 . . . 4 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉))
52 simpr 477 . . . . 5 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊‘1) ∈ 𝑉)
53 eqidd 2623 . . . . . . . 8 (𝑏 = (𝑊‘1) → 𝐴 = 𝐴)
54 id 22 . . . . . . . 8 (𝑏 = (𝑊‘1) → 𝑏 = (𝑊‘1))
55 eqidd 2623 . . . . . . . 8 (𝑏 = (𝑊‘1) → 𝐶 = 𝐶)
5653, 54, 55s3eqd 13609 . . . . . . 7 (𝑏 = (𝑊‘1) → ⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩)
57 eqeq2 2633 . . . . . . . 8 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ↔ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩))
58 eleq1 2689 . . . . . . . 8 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
5957, 58anbi12d 747 . . . . . . 7 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
6056, 59syl 17 . . . . . 6 (𝑏 = (𝑊‘1) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
6160adantl 482 . . . . 5 ((((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ∧ 𝑏 = (𝑊‘1)) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
62 simpr 477 . . . . . . 7 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
63 eleq1 2689 . . . . . . . 8 (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6463biimpac 503 . . . . . . 7 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
6562, 64jca 554 . . . . . 6 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6665adantr 481 . . . . 5 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6752, 61, 66rspcedvd 3317 . . . 4 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6851, 67syl 17 . . 3 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6968ex 450 . 2 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
70 eleq1 2689 . . . . . 6 (⟨“𝐴𝑏𝐶”⟩ = 𝑊 → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7170eqcoms 2630 . . . . 5 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7271biimpa 501 . . . 4 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
7372a1i 11 . . 3 ((𝐺𝑈𝐴𝑉𝐶𝑉) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7473rexlimdvw 3034 . 2 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7569, 74impbid 202 1 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  {ctp 4181  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  2c2 11070  3c3 11071  ..^cfzo 12465  #chash 13117  Word cword 13291  ⟨“cs3 13587  Vtxcvtx 25874   WWalksN cwwlksn 26718   WWalksNOn cwwlksnon 26719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724
This theorem is referenced by:  elwwlks2on  26852  frgr2wwlk1  27193
  Copyright terms: Public domain W3C validator