MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seg Structured version   Visualization version   GIF version

Theorem ax5seg 25818
Description: The five segment axiom. Take two triangles 𝐴𝐷𝐶 and 𝐸𝐻𝐺, a point 𝐵 on 𝐴𝐶, and a point 𝐹 on 𝐸𝐺. If all corresponding line segments except for 𝐶𝐷 and 𝐺𝐻 are congruent, then so are 𝐶𝐷 and 𝐺𝐻. Axiom A5 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
ax5seg (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))

Proof of Theorem ax5seg
Dummy variables 𝑖 𝑗 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (1...𝑁) ∈ Fin)
2 simpl21 1139 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
3 fveere 25781 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℝ)
42, 3sylancom 701 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℝ)
5 simpl22 1140 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
6 fveere 25781 . . . . . . . . . . . . 13 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐷𝑗) ∈ ℝ)
75, 6sylancom 701 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐷𝑗) ∈ ℝ)
84, 7resubcld 10458 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐶𝑗) − (𝐷𝑗)) ∈ ℝ)
98resqcld 13035 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐶𝑗) − (𝐷𝑗))↑2) ∈ ℝ)
101, 9fsumrecl 14465 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2) ∈ ℝ)
1110recnd 10068 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2) ∈ ℂ)
1211adantr 481 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2) ∈ ℂ)
13 simpl32 1143 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐺 ∈ (𝔼‘𝑁))
14 fveere 25781 . . . . . . . . . . . . 13 ((𝐺 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐺𝑗) ∈ ℝ)
1513, 14sylancom 701 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐺𝑗) ∈ ℝ)
16 simpl33 1144 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐻 ∈ (𝔼‘𝑁))
17 fveere 25781 . . . . . . . . . . . . 13 ((𝐻 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐻𝑗) ∈ ℝ)
1816, 17sylancom 701 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐻𝑗) ∈ ℝ)
1915, 18resubcld 10458 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐺𝑗) − (𝐻𝑗)) ∈ ℝ)
2019resqcld 13035 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐺𝑗) − (𝐻𝑗))↑2) ∈ ℝ)
211, 20fsumrecl 14465 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2) ∈ ℝ)
2221recnd 10068 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2) ∈ ℂ)
2322adantr 481 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2) ∈ ℂ)
24 0re 10040 . . . . . . . . . . . . 13 0 ∈ ℝ
25 1re 10039 . . . . . . . . . . . . 13 1 ∈ ℝ
2624, 25elicc2i 12239 . . . . . . . . . . . 12 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
2726simp1bi 1076 . . . . . . . . . . 11 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
2827recnd 10068 . . . . . . . . . 10 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
2928ad2antrr 762 . . . . . . . . 9 (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) → 𝑡 ∈ ℂ)
30293ad2ant1 1082 . . . . . . . 8 ((((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) → 𝑡 ∈ ℂ)
3130adantl 482 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝑡 ∈ ℂ)
32 simpl11 1136 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝑁 ∈ ℕ)
33 simp12 1092 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
34 simp13 1093 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
35 simp21 1094 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
3633, 34, 353jca 1242 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
3736adantr 481 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
38 simprrl 804 . . . . . . . . . 10 (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))))
39383ad2ant1 1082 . . . . . . . . 9 ((((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))))
4039adantl 482 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))))
41 simp1rl 1126 . . . . . . . . 9 ((((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) → 𝐴𝐵)
4241adantl 482 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝐴𝐵)
43 ax5seglem4 25812 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ 𝐴𝐵) → 𝑡 ≠ 0)
4432, 37, 40, 42, 43syl211anc 1332 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝑡 ≠ 0)
45 simpr3r 1123 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)
46 simpl13 1138 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝐵 ∈ (𝔼‘𝑁))
47 simpl22 1140 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝐷 ∈ (𝔼‘𝑁))
48 simpl31 1142 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝐹 ∈ (𝔼‘𝑁))
49 simpl33 1144 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝐻 ∈ (𝔼‘𝑁))
50 brcgr 25780 . . . . . . . . . . . 12 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐹𝑗) − (𝐻𝑗))↑2)))
5146, 47, 48, 49, 50syl22anc 1327 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐹𝑗) − (𝐻𝑗))↑2)))
5245, 51mpbid 222 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐹𝑗) − (𝐻𝑗))↑2))
53 simp23 1096 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
54 simp31 1097 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
55 simp32 1098 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐺 ∈ (𝔼‘𝑁))
5653, 54, 553jca 1242 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁)))
5736, 56jca 554 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁))))
5857adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁))))
59 simpr1l 1118 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)))
60 simprrr 805 . . . . . . . . . . . . . . . 16 (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) → ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))
61603ad2ant1 1082 . . . . . . . . . . . . . . 15 ((((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) → ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))
6261adantl 482 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))
6340, 62jca 554 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))
64 simpr2l 1120 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩)
65 simpr2r 1121 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)
66 ax5seglem6 25814 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)) → 𝑡 = 𝑠)
6732, 58, 42, 59, 63, 64, 65, 66syl232anc 1353 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝑡 = 𝑠)
6867oveq2d 6666 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (1 − 𝑡) = (1 − 𝑠))
6956adantr 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁)))
70 ax5seglem3 25811 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁))) ∧ ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐺𝑗))↑2))
7132, 37, 69, 59, 63, 64, 65, 70syl322anc 1354 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐺𝑗))↑2))
7267, 71oveq12d 6668 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) = (𝑠 · Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐺𝑗))↑2)))
73 simpr3l 1122 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → ⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩)
74 simpl12 1137 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝐴 ∈ (𝔼‘𝑁))
75 simpl23 1141 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝐸 ∈ (𝔼‘𝑁))
76 brcgr 25780 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐻𝑗))↑2)))
7774, 47, 75, 49, 76syl22anc 1327 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐻𝑗))↑2)))
7873, 77mpbid 222 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐻𝑗))↑2))
7972, 78oveq12d 6668 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → ((𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)) = ((𝑠 · Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐺𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐻𝑗))↑2)))
8068, 79oveq12d 6668 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → ((1 − 𝑡) · ((𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2))) = ((1 − 𝑠) · ((𝑠 · Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐺𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐻𝑗))↑2))))
8152, 80oveq12d 6668 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑡) · ((𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))) = (Σ𝑗 ∈ (1...𝑁)(((𝐹𝑗) − (𝐻𝑗))↑2) + ((1 − 𝑠) · ((𝑠 · Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐺𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐻𝑗))↑2)))))
8233, 34jca 554 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
83 simp22 1095 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
8482, 35, 83jca32 558 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))))
8584adantr 481 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))))
86 simp1ll 1124 . . . . . . . . . . 11 ((((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) → 𝑡 ∈ (0[,]1))
8786adantl 482 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝑡 ∈ (0[,]1))
88 ax5seglem9 25817 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑡 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))))) → (𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑡) · ((𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))))
8932, 85, 87, 40, 88syl22anc 1327 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑡) · ((𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))))
90 3simpc 1060 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁)) → (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁)))
91903ad2ant3 1084 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁)))
9253, 54, 91jca31 557 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))))
9392adantr 481 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → ((𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))))
94 simp1lr 1125 . . . . . . . . . . 11 ((((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) → 𝑠 ∈ (0[,]1))
9594adantl 482 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → 𝑠 ∈ (0[,]1))
96 ax5seglem9 25817 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁)))) ∧ (𝑠 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))) → (𝑠 · Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐹𝑗) − (𝐻𝑗))↑2) + ((1 − 𝑠) · ((𝑠 · Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐺𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐻𝑗))↑2)))))
9732, 93, 95, 62, 96syl22anc 1327 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (𝑠 · Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐹𝑗) − (𝐻𝑗))↑2) + ((1 − 𝑠) · ((𝑠 · Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐺𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐸𝑗) − (𝐻𝑗))↑2)))))
9881, 89, 973eqtr4d 2666 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2)) = (𝑠 · Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2)))
9967oveq1d 6665 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2)) = (𝑠 · Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2)))
10098, 99eqtr4d 2659 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → (𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2)) = (𝑡 · Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2)))
10112, 23, 31, 44, 100mulcanad 10662 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) → Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2))
1021013exp2 1285 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ (𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩) → Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2)))))
103102expd 452 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ((𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩) → Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2))))))
104103rexlimdvv 3037 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩) → Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2)))))
1051043impd 1281 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) → Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2)))
106 brbtwn 25779 . . . . . . . 8 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
10734, 33, 35, 106syl3anc 1326 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
108 brbtwn 25779 . . . . . . . 8 ((𝐹 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁)) → (𝐹 Btwn ⟨𝐸, 𝐺⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))
10954, 53, 55, 108syl3anc 1326 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (𝐹 Btwn ⟨𝐸, 𝐺⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))
110107, 109anbi12d 747 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))))
111 reeanv 3107 . . . . . 6 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))
112110, 111syl6bbr 278 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))))
113112anbi2d 740 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((𝐴𝐵 ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩)) ↔ (𝐴𝐵 ∧ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))))
114 3anass 1042 . . . 4 ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ↔ (𝐴𝐵 ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩)))
115 r19.42v 3092 . . . . . 6 (∃𝑠 ∈ (0[,]1)(𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))) ↔ (𝐴𝐵 ∧ ∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))))
116115rexbii 3041 . . . . 5 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))) ↔ ∃𝑡 ∈ (0[,]1)(𝐴𝐵 ∧ ∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))))
117 r19.42v 3092 . . . . 5 (∃𝑡 ∈ (0[,]1)(𝐴𝐵 ∧ ∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))) ↔ (𝐴𝐵 ∧ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))))
118116, 117bitri 264 . . . 4 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))) ↔ (𝐴𝐵 ∧ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))))
119113, 114, 1183bitr4g 303 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖)))))))
1201193anbi1d 1403 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) ↔ (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(𝐴𝐵 ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐹𝑖) = (((1 − 𝑠) · (𝐸𝑖)) + (𝑠 · (𝐺𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))
121 simp33 1099 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐻 ∈ (𝔼‘𝑁))
122 brcgr 25780 . . 3 (((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2)))
12335, 83, 55, 121, 122syl22anc 1327 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐺𝑗) − (𝐻𝑗))↑2)))
124105, 120, 1233imtr4d 283 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  cn 11020  2c2 11070  [,]cicc 12178  ...cfz 12326  cexp 12860  Σcsu 14416  𝔼cee 25768   Btwn cbtwn 25769  Cgrccgr 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773
This theorem is referenced by:  eengtrkg  25865  5segofs  32113
  Copyright terms: Public domain W3C validator