![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvscl | Structured version Visualization version GIF version |
Description: Closure of scalar product for a semiring left module. (hvmulcl 27870 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
slmdvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
slmdvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
slmdvscl | ⊢ ((𝑊 ∈ SLMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 251 | . 2 ⊢ (𝑊 ∈ SLMod ↔ 𝑊 ∈ SLMod) | |
2 | pm4.24 675 | . 2 ⊢ (𝑅 ∈ 𝐾 ↔ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) | |
3 | pm4.24 675 | . 2 ⊢ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) | |
4 | slmdvscl.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
5 | eqid 2622 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
6 | slmdvscl.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | eqid 2622 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
8 | slmdvscl.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
9 | slmdvscl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
10 | eqid 2622 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
11 | eqid 2622 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
12 | eqid 2622 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
13 | eqid 2622 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
14 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | slmdlema 29756 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑅(.r‘𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ ((0g‘𝐹) · 𝑋) = (0g‘𝑊)))) |
15 | 14 | simpld 475 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)))) |
16 | 15 | simp1d 1073 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · 𝑋) ∈ 𝑉) |
17 | 1, 2, 3, 16 | syl3anb 1369 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 .rcmulr 15942 Scalarcsca 15944 ·𝑠 cvsca 15945 0gc0g 16100 1rcur 18501 SLModcslmd 29753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-slmd 29754 |
This theorem is referenced by: gsumvsca1 29782 gsumvsca2 29783 sitgaddlemb 30410 |
Copyright terms: Public domain | W3C validator |