Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvscl Structured version   Visualization version   GIF version

Theorem slmdvscl 29767
Description: Closure of scalar product for a semiring left module. (hvmulcl 27870 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvscl.v 𝑉 = (Base‘𝑊)
slmdvscl.f 𝐹 = (Scalar‘𝑊)
slmdvscl.s · = ( ·𝑠𝑊)
slmdvscl.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
slmdvscl ((𝑊 ∈ SLMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)

Proof of Theorem slmdvscl
StepHypRef Expression
1 biid 251 . 2 (𝑊 ∈ SLMod ↔ 𝑊 ∈ SLMod)
2 pm4.24 675 . 2 (𝑅𝐾 ↔ (𝑅𝐾𝑅𝐾))
3 pm4.24 675 . 2 (𝑋𝑉 ↔ (𝑋𝑉𝑋𝑉))
4 slmdvscl.v . . . . 5 𝑉 = (Base‘𝑊)
5 eqid 2622 . . . . 5 (+g𝑊) = (+g𝑊)
6 slmdvscl.s . . . . 5 · = ( ·𝑠𝑊)
7 eqid 2622 . . . . 5 (0g𝑊) = (0g𝑊)
8 slmdvscl.f . . . . 5 𝐹 = (Scalar‘𝑊)
9 slmdvscl.k . . . . 5 𝐾 = (Base‘𝐹)
10 eqid 2622 . . . . 5 (+g𝐹) = (+g𝐹)
11 eqid 2622 . . . . 5 (.r𝐹) = (.r𝐹)
12 eqid 2622 . . . . 5 (1r𝐹) = (1r𝐹)
13 eqid 2622 . . . . 5 (0g𝐹) = (0g𝐹)
144, 5, 6, 7, 8, 9, 10, 11, 12, 13slmdlema 29756 . . . 4 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g𝑊)𝑋)) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋))) ∧ (((𝑅(.r𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ ((0g𝐹) · 𝑋) = (0g𝑊))))
1514simpld 475 . . 3 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g𝑊)𝑋)) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋))))
1615simp1d 1073 . 2 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (𝑅 · 𝑋) ∈ 𝑉)
171, 2, 3, 16syl3anb 1369 1 ((𝑊 ∈ SLMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  1rcur 18501  SLModcslmd 29753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-slmd 29754
This theorem is referenced by:  gsumvsca1  29782  gsumvsca2  29783  sitgaddlemb  30410
  Copyright terms: Public domain W3C validator