MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smodm2 Structured version   Visualization version   GIF version

Theorem smodm2 7452
Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smodm2 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)

Proof of Theorem smodm2
StepHypRef Expression
1 smodm 7448 . 2 (Smo 𝐹 → Ord dom 𝐹)
2 fndm 5990 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3 ordeq 5730 . . . 4 (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
42, 3syl 17 . . 3 (𝐹 Fn 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
54biimpa 501 . 2 ((𝐹 Fn 𝐴 ∧ Ord dom 𝐹) → Ord 𝐴)
61, 5sylan2 491 1 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  dom cdm 5114  Ord word 5722   Fn wfn 5883  Smo wsmo 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-in 3581  df-ss 3588  df-uni 4437  df-tr 4753  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-fn 5891  df-smo 7443
This theorem is referenced by:  smo11  7461  smoord  7462  smoword  7463  smogt  7464  smorndom  7465  coftr  9095
  Copyright terms: Public domain W3C validator