MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoord Structured version   Visualization version   GIF version

Theorem smoord 7462
Description: A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
smoord (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))

Proof of Theorem smoord
StepHypRef Expression
1 smodm2 7452 . . . 4 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
21adantr 481 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐴)
3 simprl 794 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
4 ordelord 5745 . . 3 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
52, 3, 4syl2anc 693 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐶)
6 simprr 796 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
7 ordelord 5745 . . 3 ((Ord 𝐴𝐷𝐴) → Ord 𝐷)
82, 6, 7syl2anc 693 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐷)
9 ordtri3or 5755 . . 3 ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷𝐶 = 𝐷𝐷𝐶))
10 simp3 1063 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → 𝐶𝐷)
11 smoel2 7460 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐷)) → (𝐹𝐶) ∈ (𝐹𝐷))
1211expr 643 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ 𝐷𝐴) → (𝐶𝐷 → (𝐹𝐶) ∈ (𝐹𝐷)))
1312adantrl 752 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 → (𝐹𝐶) ∈ (𝐹𝐷)))
14133impia 1261 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → (𝐹𝐶) ∈ (𝐹𝐷))
1510, 142thd 255 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
16153expia 1267 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
17 ordirr 5741 . . . . . . . . 9 (Ord 𝐶 → ¬ 𝐶𝐶)
185, 17syl 17 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ¬ 𝐶𝐶)
19183adant3 1081 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶𝐶)
20 simp3 1063 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → 𝐶 = 𝐷)
2119, 20neleqtrd 2722 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶𝐷)
22 smofvon2 7453 . . . . . . . . . 10 (Smo 𝐹 → (𝐹𝐶) ∈ On)
2322ad2antlr 763 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐶) ∈ On)
24 eloni 5733 . . . . . . . . 9 ((𝐹𝐶) ∈ On → Ord (𝐹𝐶))
25 ordirr 5741 . . . . . . . . 9 (Ord (𝐹𝐶) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
2623, 24, 253syl 18 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
27263adant3 1081 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
2820fveq2d 6195 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → (𝐹𝐶) = (𝐹𝐷))
2927, 28neleqtrd 2722 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹𝐶) ∈ (𝐹𝐷))
3021, 292falsed 366 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
31303expia 1267 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶 = 𝐷 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
3283adant3 1081 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → Ord 𝐷)
33 ordn2lp 5743 . . . . . . . 8 (Ord 𝐷 → ¬ (𝐷𝐶𝐶𝐷))
3432, 33syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ (𝐷𝐶𝐶𝐷))
35 pm3.2 463 . . . . . . . 8 (𝐷𝐶 → (𝐶𝐷 → (𝐷𝐶𝐶𝐷)))
36353ad2ant3 1084 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐶𝐷 → (𝐷𝐶𝐶𝐷)))
3734, 36mtod 189 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ 𝐶𝐷)
3823, 24syl 17 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐶))
39383adant3 1081 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → Ord (𝐹𝐶))
40 ordn2lp 5743 . . . . . . . 8 (Ord (𝐹𝐶) → ¬ ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶)))
4139, 40syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶)))
42 smoel2 7460 . . . . . . . . . 10 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐶)) → (𝐹𝐷) ∈ (𝐹𝐶))
4342adantrlr 759 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ ((𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶)) → (𝐹𝐷) ∈ (𝐹𝐶))
44433impb 1260 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐹𝐷) ∈ (𝐹𝐶))
45 pm3.21 464 . . . . . . . 8 ((𝐹𝐷) ∈ (𝐹𝐶) → ((𝐹𝐶) ∈ (𝐹𝐷) → ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶))))
4644, 45syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ((𝐹𝐶) ∈ (𝐹𝐷) → ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶))))
4741, 46mtod 189 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ (𝐹𝐶) ∈ (𝐹𝐷))
4837, 472falsed 366 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
49483expia 1267 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐷𝐶 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
5016, 31, 493jaod 1392 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶𝐷𝐶 = 𝐷𝐷𝐶) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
519, 50syl5 34 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
525, 8, 51mp2and 715 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  Ord word 5722  Oncon0 5723   Fn wfn 5883  cfv 5888  Smo wsmo 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-smo 7443
This theorem is referenced by:  smoword  7463  smoiso2  7466
  Copyright terms: Public domain W3C validator