Proof of Theorem smoord
| Step | Hyp | Ref
| Expression |
| 1 | | smodm2 7452 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
| 2 | 1 | adantr 481 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord 𝐴) |
| 3 | | simprl 794 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐶 ∈ 𝐴) |
| 4 | | ordelord 5745 |
. . 3
⊢ ((Ord
𝐴 ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) |
| 5 | 2, 3, 4 | syl2anc 693 |
. 2
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord 𝐶) |
| 6 | | simprr 796 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐷 ∈ 𝐴) |
| 7 | | ordelord 5745 |
. . 3
⊢ ((Ord
𝐴 ∧ 𝐷 ∈ 𝐴) → Ord 𝐷) |
| 8 | 2, 6, 7 | syl2anc 693 |
. 2
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord 𝐷) |
| 9 | | ordtri3or 5755 |
. . 3
⊢ ((Ord
𝐶 ∧ Ord 𝐷) → (𝐶 ∈ 𝐷 ∨ 𝐶 = 𝐷 ∨ 𝐷 ∈ 𝐶)) |
| 10 | | simp3 1063 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐶 ∈ 𝐷) → 𝐶 ∈ 𝐷) |
| 11 | | smoel2 7460 |
. . . . . . . . 9
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐷)) → (𝐹‘𝐶) ∈ (𝐹‘𝐷)) |
| 12 | 11 | expr 643 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ 𝐷 ∈ 𝐴) → (𝐶 ∈ 𝐷 → (𝐹‘𝐶) ∈ (𝐹‘𝐷))) |
| 13 | 12 | adantrl 752 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ∈ 𝐷 → (𝐹‘𝐶) ∈ (𝐹‘𝐷))) |
| 14 | 13 | 3impia 1261 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐶 ∈ 𝐷) → (𝐹‘𝐶) ∈ (𝐹‘𝐷)) |
| 15 | 10, 14 | 2thd 255 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐶 ∈ 𝐷) → (𝐶 ∈ 𝐷 ↔ (𝐹‘𝐶) ∈ (𝐹‘𝐷))) |
| 16 | 15 | 3expia 1267 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ∈ 𝐷 → (𝐶 ∈ 𝐷 ↔ (𝐹‘𝐶) ∈ (𝐹‘𝐷)))) |
| 17 | | ordirr 5741 |
. . . . . . . . 9
⊢ (Ord
𝐶 → ¬ 𝐶 ∈ 𝐶) |
| 18 | 5, 17 | syl 17 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ 𝐶 ∈ 𝐶) |
| 19 | 18 | 3adant3 1081 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶 ∈ 𝐶) |
| 20 | | simp3 1063 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐶 = 𝐷) → 𝐶 = 𝐷) |
| 21 | 19, 20 | neleqtrd 2722 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶 ∈ 𝐷) |
| 22 | | smofvon2 7453 |
. . . . . . . . . 10
⊢ (Smo
𝐹 → (𝐹‘𝐶) ∈ On) |
| 23 | 22 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐹‘𝐶) ∈ On) |
| 24 | | eloni 5733 |
. . . . . . . . 9
⊢ ((𝐹‘𝐶) ∈ On → Ord (𝐹‘𝐶)) |
| 25 | | ordirr 5741 |
. . . . . . . . 9
⊢ (Ord
(𝐹‘𝐶) → ¬ (𝐹‘𝐶) ∈ (𝐹‘𝐶)) |
| 26 | 23, 24, 25 | 3syl 18 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐹‘𝐶) ∈ (𝐹‘𝐶)) |
| 27 | 26 | 3adant3 1081 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹‘𝐶) ∈ (𝐹‘𝐶)) |
| 28 | 20 | fveq2d 6195 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐶 = 𝐷) → (𝐹‘𝐶) = (𝐹‘𝐷)) |
| 29 | 27, 28 | neleqtrd 2722 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹‘𝐶) ∈ (𝐹‘𝐷)) |
| 30 | 21, 29 | 2falsed 366 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐶 = 𝐷) → (𝐶 ∈ 𝐷 ↔ (𝐹‘𝐶) ∈ (𝐹‘𝐷))) |
| 31 | 30 | 3expia 1267 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 = 𝐷 → (𝐶 ∈ 𝐷 ↔ (𝐹‘𝐶) ∈ (𝐹‘𝐷)))) |
| 32 | 8 | 3adant3 1081 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷 ∈ 𝐶) → Ord 𝐷) |
| 33 | | ordn2lp 5743 |
. . . . . . . 8
⊢ (Ord
𝐷 → ¬ (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷)) |
| 34 | 32, 33 | syl 17 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷 ∈ 𝐶) → ¬ (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷)) |
| 35 | | pm3.2 463 |
. . . . . . . 8
⊢ (𝐷 ∈ 𝐶 → (𝐶 ∈ 𝐷 → (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷))) |
| 36 | 35 | 3ad2ant3 1084 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷 ∈ 𝐶) → (𝐶 ∈ 𝐷 → (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷))) |
| 37 | 34, 36 | mtod 189 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷 ∈ 𝐶) → ¬ 𝐶 ∈ 𝐷) |
| 38 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord (𝐹‘𝐶)) |
| 39 | 38 | 3adant3 1081 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷 ∈ 𝐶) → Ord (𝐹‘𝐶)) |
| 40 | | ordn2lp 5743 |
. . . . . . . 8
⊢ (Ord
(𝐹‘𝐶) → ¬ ((𝐹‘𝐶) ∈ (𝐹‘𝐷) ∧ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
| 41 | 39, 40 | syl 17 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷 ∈ 𝐶) → ¬ ((𝐹‘𝐶) ∈ (𝐹‘𝐷) ∧ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
| 42 | | smoel2 7460 |
. . . . . . . . . 10
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐶)) → (𝐹‘𝐷) ∈ (𝐹‘𝐶)) |
| 43 | 42 | adantrlr 759 |
. . . . . . . . 9
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷 ∈ 𝐶)) → (𝐹‘𝐷) ∈ (𝐹‘𝐶)) |
| 44 | 43 | 3impb 1260 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷 ∈ 𝐶) → (𝐹‘𝐷) ∈ (𝐹‘𝐶)) |
| 45 | | pm3.21 464 |
. . . . . . . 8
⊢ ((𝐹‘𝐷) ∈ (𝐹‘𝐶) → ((𝐹‘𝐶) ∈ (𝐹‘𝐷) → ((𝐹‘𝐶) ∈ (𝐹‘𝐷) ∧ (𝐹‘𝐷) ∈ (𝐹‘𝐶)))) |
| 46 | 44, 45 | syl 17 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷 ∈ 𝐶) → ((𝐹‘𝐶) ∈ (𝐹‘𝐷) → ((𝐹‘𝐶) ∈ (𝐹‘𝐷) ∧ (𝐹‘𝐷) ∈ (𝐹‘𝐶)))) |
| 47 | 41, 46 | mtod 189 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷 ∈ 𝐶) → ¬ (𝐹‘𝐶) ∈ (𝐹‘𝐷)) |
| 48 | 37, 47 | 2falsed 366 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷 ∈ 𝐶) → (𝐶 ∈ 𝐷 ↔ (𝐹‘𝐶) ∈ (𝐹‘𝐷))) |
| 49 | 48 | 3expia 1267 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐷 ∈ 𝐶 → (𝐶 ∈ 𝐷 ↔ (𝐹‘𝐶) ∈ (𝐹‘𝐷)))) |
| 50 | 16, 31, 49 | 3jaod 1392 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐶 ∈ 𝐷 ∨ 𝐶 = 𝐷 ∨ 𝐷 ∈ 𝐶) → (𝐶 ∈ 𝐷 ↔ (𝐹‘𝐶) ∈ (𝐹‘𝐷)))) |
| 51 | 9, 50 | syl5 34 |
. 2
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶 ∈ 𝐷 ↔ (𝐹‘𝐶) ∈ (𝐹‘𝐷)))) |
| 52 | 5, 8, 51 | mp2and 715 |
1
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ∈ 𝐷 ↔ (𝐹‘𝐶) ∈ (𝐹‘𝐷))) |