| Step | Hyp | Ref
| Expression |
| 1 | | smodm 7448 |
. . . . 5
⊢ (Smo
𝐵 → Ord dom 𝐵) |
| 2 | | ordtr1 5767 |
. . . . . . 7
⊢ (Ord dom
𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝐵) → 𝐶 ∈ dom 𝐵)) |
| 3 | 2 | ancomsd 470 |
. . . . . 6
⊢ (Ord dom
𝐵 → ((𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ dom 𝐵)) |
| 4 | 3 | expdimp 453 |
. . . . 5
⊢ ((Ord dom
𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐶 ∈ 𝐴 → 𝐶 ∈ dom 𝐵)) |
| 5 | 1, 4 | sylan 488 |
. . . 4
⊢ ((Smo
𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐶 ∈ 𝐴 → 𝐶 ∈ dom 𝐵)) |
| 6 | | df-smo 7443 |
. . . . . 6
⊢ (Smo
𝐵 ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵∀𝑦 ∈ dom 𝐵(𝑥 ∈ 𝑦 → (𝐵‘𝑥) ∈ (𝐵‘𝑦)))) |
| 7 | | eleq1 2689 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝑦 ↔ 𝐶 ∈ 𝑦)) |
| 8 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐶 → (𝐵‘𝑥) = (𝐵‘𝐶)) |
| 9 | 8 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐶 → ((𝐵‘𝑥) ∈ (𝐵‘𝑦) ↔ (𝐵‘𝐶) ∈ (𝐵‘𝑦))) |
| 10 | 7, 9 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝑦 → (𝐵‘𝑥) ∈ (𝐵‘𝑦)) ↔ (𝐶 ∈ 𝑦 → (𝐵‘𝐶) ∈ (𝐵‘𝑦)))) |
| 11 | | eleq2 2690 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → (𝐶 ∈ 𝑦 ↔ 𝐶 ∈ 𝐴)) |
| 12 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (𝐵‘𝑦) = (𝐵‘𝐴)) |
| 13 | 12 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → ((𝐵‘𝐶) ∈ (𝐵‘𝑦) ↔ (𝐵‘𝐶) ∈ (𝐵‘𝐴))) |
| 14 | 11, 13 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → ((𝐶 ∈ 𝑦 → (𝐵‘𝐶) ∈ (𝐵‘𝑦)) ↔ (𝐶 ∈ 𝐴 → (𝐵‘𝐶) ∈ (𝐵‘𝐴)))) |
| 15 | 10, 14 | rspc2v 3322 |
. . . . . . . . 9
⊢ ((𝐶 ∈ dom 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (∀𝑥 ∈ dom 𝐵∀𝑦 ∈ dom 𝐵(𝑥 ∈ 𝑦 → (𝐵‘𝑥) ∈ (𝐵‘𝑦)) → (𝐶 ∈ 𝐴 → (𝐵‘𝐶) ∈ (𝐵‘𝐴)))) |
| 16 | 15 | ancoms 469 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵) → (∀𝑥 ∈ dom 𝐵∀𝑦 ∈ dom 𝐵(𝑥 ∈ 𝑦 → (𝐵‘𝑥) ∈ (𝐵‘𝑦)) → (𝐶 ∈ 𝐴 → (𝐵‘𝐶) ∈ (𝐵‘𝐴)))) |
| 17 | 16 | com12 32 |
. . . . . . 7
⊢
(∀𝑥 ∈
dom 𝐵∀𝑦 ∈ dom 𝐵(𝑥 ∈ 𝑦 → (𝐵‘𝑥) ∈ (𝐵‘𝑦)) → ((𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵) → (𝐶 ∈ 𝐴 → (𝐵‘𝐶) ∈ (𝐵‘𝐴)))) |
| 18 | 17 | 3ad2ant3 1084 |
. . . . . 6
⊢ ((𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵∀𝑦 ∈ dom 𝐵(𝑥 ∈ 𝑦 → (𝐵‘𝑥) ∈ (𝐵‘𝑦))) → ((𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵) → (𝐶 ∈ 𝐴 → (𝐵‘𝐶) ∈ (𝐵‘𝐴)))) |
| 19 | 6, 18 | sylbi 207 |
. . . . 5
⊢ (Smo
𝐵 → ((𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵) → (𝐶 ∈ 𝐴 → (𝐵‘𝐶) ∈ (𝐵‘𝐴)))) |
| 20 | 19 | expdimp 453 |
. . . 4
⊢ ((Smo
𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐶 ∈ dom 𝐵 → (𝐶 ∈ 𝐴 → (𝐵‘𝐶) ∈ (𝐵‘𝐴)))) |
| 21 | 5, 20 | syld 47 |
. . 3
⊢ ((Smo
𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐶 ∈ 𝐴 → (𝐶 ∈ 𝐴 → (𝐵‘𝐶) ∈ (𝐵‘𝐴)))) |
| 22 | 21 | pm2.43d 53 |
. 2
⊢ ((Smo
𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐶 ∈ 𝐴 → (𝐵‘𝐶) ∈ (𝐵‘𝐴))) |
| 23 | 22 | 3impia 1261 |
1
⊢ ((Smo
𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐵‘𝐶) ∈ (𝐵‘𝐴)) |