| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smoel | Structured version Visualization version Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| smoel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smodm 7448 |
. . . . 5
| |
| 2 | ordtr1 5767 |
. . . . . . 7
| |
| 3 | 2 | ancomsd 470 |
. . . . . 6
|
| 4 | 3 | expdimp 453 |
. . . . 5
|
| 5 | 1, 4 | sylan 488 |
. . . 4
|
| 6 | df-smo 7443 |
. . . . . 6
| |
| 7 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 8 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 9 | 8 | eleq1d 2686 |
. . . . . . . . . . 11
|
| 10 | 7, 9 | imbi12d 334 |
. . . . . . . . . 10
|
| 11 | eleq2 2690 |
. . . . . . . . . . 11
| |
| 12 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 13 | 12 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 14 | 11, 13 | imbi12d 334 |
. . . . . . . . . 10
|
| 15 | 10, 14 | rspc2v 3322 |
. . . . . . . . 9
|
| 16 | 15 | ancoms 469 |
. . . . . . . 8
|
| 17 | 16 | com12 32 |
. . . . . . 7
|
| 18 | 17 | 3ad2ant3 1084 |
. . . . . 6
|
| 19 | 6, 18 | sylbi 207 |
. . . . 5
|
| 20 | 19 | expdimp 453 |
. . . 4
|
| 21 | 5, 20 | syld 47 |
. . 3
|
| 22 | 21 | pm2.43d 53 |
. 2
|
| 23 | 22 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-tr 4753 df-ord 5726 df-iota 5851 df-fv 5896 df-smo 7443 |
| This theorem is referenced by: smoiun 7458 smoel2 7460 |
| Copyright terms: Public domain | W3C validator |