Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snsslVD Structured version   Visualization version   GIF version

Theorem snsslVD 39064
Description: Virtual deduction proof of snssl 39065. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
snsslVD.1 𝐴 ∈ V
Assertion
Ref Expression
snsslVD ({𝐴} ⊆ 𝐵𝐴𝐵)

Proof of Theorem snsslVD
StepHypRef Expression
1 idn1 38790 . . 3 (   {𝐴} ⊆ 𝐵   ▶   {𝐴} ⊆ 𝐵   )
2 snsslVD.1 . . . 4 𝐴 ∈ V
32snid 4208 . . 3 𝐴 ∈ {𝐴}
4 ssel2 3598 . . 3 (({𝐴} ⊆ 𝐵𝐴 ∈ {𝐴}) → 𝐴𝐵)
51, 3, 4e10an 38920 . 2 (   {𝐴} ⊆ 𝐵   ▶   𝐴𝐵   )
65in1 38787 1 ({𝐴} ⊆ 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1990  Vcvv 3200  wss 3574  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-sn 4178  df-vd1 38786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator