Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snssiALT Structured version   Visualization version   GIF version

Theorem snssiALT 39063
Description: If a class is an element of another class, then its singleton is a subclass of that other class. Alternate proof of snssi 4339. This theorem was automatically generated from snssiALTVD 39062 using a translation program. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snssiALT (𝐴𝐵 → {𝐴} ⊆ 𝐵)

Proof of Theorem snssiALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 velsn 4193 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2 eleq1a 2696 . . . 4 (𝐴𝐵 → (𝑥 = 𝐴𝑥𝐵))
31, 2syl5bi 232 . . 3 (𝐴𝐵 → (𝑥 ∈ {𝐴} → 𝑥𝐵))
43alrimiv 1855 . 2 (𝐴𝐵 → ∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵))
5 dfss2 3591 . 2 ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵))
64, 5sylibr 224 1 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481   = wceq 1483  wcel 1990  wss 3574  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-sn 4178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator