![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snssiALT | Structured version Visualization version GIF version |
Description: If a class is an element of another class, then its singleton is a subclass of that other class. Alternate proof of snssi 4339. This theorem was automatically generated from snssiALTVD 39062 using a translation program. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snssiALT | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4193 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | eleq1a 2696 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | syl5bi 232 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) |
4 | 3 | alrimiv 1855 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) |
5 | dfss2 3591 | . 2 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
6 | 4, 5 | sylibr 224 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1481 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 {csn 4177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-sn 4178 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |